Show simple item record

dc.contributor.authorEzan, Mehmet Akif
dc.contributor.authorEkren, Orhan
dc.contributor.authorMetin, Çağrı
dc.contributor.authorYılancı, Ahmet
dc.contributor.authorBıyık, Emrah
dc.contributor.authorKara, Salih Murat
dc.date.accessioned2017-10-13T11:49:38Z
dc.date.available2017-10-13T11:49:38Z
dc.date.issued2017-03
dc.identifier.citationEzan, M. A., Ekren, O., Metin, Ç., Yılancı, A., Bıyık, E., and Kara, S. M. (2017). Numerical analysis of a near-room-temperature magnetic cooling system. International Journal of Refrigeration, 75, 262-275. doi:10.1016/j.ijrefrig.2016.12.018en_US
dc.identifier.issn0140-7007
dc.identifier.urihttp://doi.org/10.1016/j.ijrefrig.2016.12.018
dc.identifier.urihttp://hdl.handle.net/11147/6351
dc.description.abstractIn this study, for a near-room-temperature magnetic cooling system, a decoupled multi-physics numerical approach (Magnetism, Fluid Flow, and Heat Transfer) is developed using a commercial CFD solver, ANSYS-FLUENT, as a design tool. User defined functions are incorporated into the software in order to take into account the magnetocaloric effect. Magnetic flux density is assumed to be linear during the magnetization and demagnetization processes. Furthermore, the minimum and maximum magnetic flux densities (Bmin and Bmax) are defined as 0.27 and 0.98, respectively. Two different sets of analyses are conducted by assuming an insulated cold heat exchanger (CHEX) and by defining an artificial cooling load in the CHEX. As a validation case, experimental work from the literature is reproduced numerically, and the results show that the current methodology is fairly accurate. Moreover, parametric analyses are conducted to investigate the effect of the velocity of heat transfer fluid (HTF) and types of HTF on the performance of the magnetic cooling system. Also, the performance metrics of the magnetic cooling system are investigated with regards to the temperature span of the magnetic cooling unit, and the cooling load. It is concluded that reducing the cycle duration ensures reaching lower temperature values. Similarly, reducing the velocity of the HTF allows reducing the outlet temperature of the HTF. In the current system, the highest temperature spans are obtained numerically as around 6 K, 5.2 K and 4.1 K for the cycle durations of 4.2 s, 6.2 s and 8.2 s, respectively.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK 114M829)en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.isversionof10.1016/j.ijrefrig.2016.12.018en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectComputational fluid dynamicsen_US
dc.subjectMagnetic coolingen_US
dc.subjectUser defined functionsen_US
dc.titleNumerical analysis of a near-room-temperature magnetic cooling systemen_US
dc.title.alternativeAnalyse numérique d’un système de froid magnétique proche de la température ambianteen_US
dc.typearticleen_US
dc.contributor.iztechauthorKara, Salih Murat
dc.relation.journalInternational Journal of Refrigerationen_US
dc.contributor.departmentİYTE, Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.identifier.volume75en_US
dc.identifier.startpage262en_US
dc.identifier.endpage275en_US
dc.identifier.wosWOS:000397558400024
dc.identifier.scopusSCOPUS:2-s2.0-85012237765
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record