• English
    • Türkçe
  • English 
    • English
    • Türkçe
  • Login
View Item 
  •   DSpace Home
  • 3. Mühendislik Fakültesi / Faculty of Engineering
  • Chemical Engineering / Kimya Mühendisliği
  • View Item
  •   DSpace Home
  • 3. Mühendislik Fakültesi / Faculty of Engineering
  • Chemical Engineering / Kimya Mühendisliği
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Realtime Access Map

Adsorption of NO in clinoptilolite-rich zeolitic mineral by concentration pulse chromatography method

Thumbnail
View/Open
Makale (1.032Mb)
Date
2016-11-01
Author
Narin, Güler
Ülkü, Semra
Metadata
Show full item record
Abstract
The equilibrium and kinetic parameters for NO adsorption in a clinoptilolite-rich natural zeolitic material from Turkey were determined using the concentration pulse chromatography method. Under the experimental conditions (carrier gas velocities and adsorption temperatures) the micropore diffusion resistance was found to be the mass transfer controlling step. Matching the first moment of the response peaks to the mathematical model the Henry's Law constants and heat of adsorption at zero loading were determined. The axial dispersion, external film, macropore and micropore diffusion coefficients, and activation energy for diffusion of NO in the micropores were calculated from the analysis of the second moments of the response peaks. For successive NO pulses without regeneration between the pulses, the retention times of the response peaks decreased and peak areas increased with the injection number indicating irreversible adsorption. The reversibly adsorbed NO could be desorbed by purging with an inert gas at the adsorption pressure and temperature. Temperature programmed desorption profile obtained by heating the NO saturated adsorbent to 400 °C under inert flow revealed presence of multiple irreversibly adsorbed species in NZ with different thermal stabilities. Desorption of these species was not achieved during the heating up to 400 °C which makes the natural zeolitic materıal suitable for NO storage rather than for cyclic adsorptive separation processes.
URI
http://doi.org/10.1016/j.micromeso.2016.07.007
http://hdl.handle.net/11147/5992
Collections
  • Chemical Engineering / Kimya Mühendisliği [378]
  • Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection [3276]
  • WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection [2953]


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 



| IZTECH OS Policy |
DSpace@IYTE Guide |

DSpace@IZTECH

by OpenAIRE
Advanced Search

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeIZTECH AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeIZTECH Author

My Account

LoginRegister

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| IZTECH OS Policy || DSpace@IYTE Guide || Library || IYTE || OAI-PMH ||

IZTECH Library, Gülbahçe Kampüsü - 35430 - Urla, İzmir / TURKEY
If you find any errors in content, please contact: openaccess@iyte.edu.tr.

Creative Commons Lisansı
DSpace@IZTECH by IYTE Institutional repository is licensed under a Creative Commons Attribution-Gayriticari-NoDerivs 3.0 Unported License.

DSpace@IZTECH is member of: