• English
    • Türkçe
  • English 
    • English
    • Türkçe
  • Login
View Item 
  •   DSpace Home
  • 3. Mühendislik Fakültesi / Faculty of Engineering
  • Mechanical Engineering / Makina Mühendisliği
  • View Item
  •   DSpace Home
  • 3. Mühendislik Fakültesi / Faculty of Engineering
  • Mechanical Engineering / Makina Mühendisliği
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Realtime Access Map

Quantitative trait loci that modulate trabecular bone's risk of failure during unloading and reloading

Thumbnail
View/Open
Makale (736.1Kb)
Date
2014-07
Author
Özçivici, Engin
Zhang, Weidong
Donahue, Leah Rae
Judex, Stefan
Metadata
Show full item record
Abstract
Genetic makeup of an individual is a strong determinant of the morphologic and mechanical properties of bone. Here, in an effort to identify quantitative trait loci (QTLs) for changes in the simulated mechanical parameters of trabecular bone during altered mechanical demand, we subjected 352. second generation female adult (16. weeks old) BALBxC3H mice to 3. weeks of hindlimb unloading followed by 3. weeks of reambulation. Longitudinal in vivo microcomputed tomography (μCT) scans tracked trabecular changes in the distal femur. Tomographies were directly translated into finite element (FE) models and subjected to a uniaxial compression test. Apparent trabecular stiffness and components of the Von Mises (VM) stress distributions were computed for the distal metaphysis and associated with QTLs. At baseline, five QTLs explained 20% of the variation in trabecular peak stresses across the mouse population. During unloading, three QTLs accounted for 14% of the variability in peak stresses. During reambulation, one QTL accounted for 5% of the variability in peak stresses. QTLs were also identified for mechanically induced changes in stiffness, median stress values and skewness of stress distributions. There was little overlap between QTLs identified for baseline and QTLs for longitudinal changes in mechanical properties, suggesting that distinct genes may be responsible for the mechanical response of trabecular bone. Unloading related QTLs were also different from reambulation related QTLs. Further, QTLs identified here for mechanical properties differed from previously identified QTLs for trabecular morphology, perhaps revealing novel gene targets for reducing fracture risk in individuals exposed to unloading and for maximizing the recovery of trabecular bone's mechanical properties during reambulation.
URI
https://doi.org/10.1016/j.bone.2014.03.042
http://hdl.handle.net/11147/5580
Collections
  • Mechanical Engineering / Makina Mühendisliği [437]
  • Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection [3276]
  • WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection [2953]


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 



| IZTECH OS Policy |
DSpace@IYTE Guide |

DSpace@IZTECH

by OpenAIRE
Advanced Search

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeIZTECH AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeIZTECH Author

My Account

LoginRegister

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| IZTECH OS Policy || DSpace@IYTE Guide || Library || IYTE || OAI-PMH ||

IZTECH Library, Gülbahçe Kampüsü - 35430 - Urla, İzmir / TURKEY
If you find any errors in content, please contact: openaccess@iyte.edu.tr.

Creative Commons Lisansı
DSpace@IZTECH by IYTE Institutional repository is licensed under a Creative Commons Attribution-Gayriticari-NoDerivs 3.0 Unported License.

DSpace@IZTECH is member of: