Show simple item record

dc.contributor.authorKompil, Mert
dc.contributor.authorÇelik, Hüseyin Murat
dc.date.accessioned2017-04-18T12:41:44Z
dc.date.available2017-04-18T12:41:44Z
dc.date.issued2013-03
dc.identifier.citationKompil, M., and Çelik, H.M. (2013). Modelling trip distribution with fuzzy and genetic fuzzy systems. Transportation Planning and Technology, 36(2), 170-200. doi:10.1080/03081060.2013.770946en_US
dc.identifier.issn0308-1060
dc.identifier.urihttp://doi.org/10.1080/03081060.2013.770946
dc.identifier.urihttp://hdl.handle.net/11147/5335
dc.description.abstractThis paper explores the potential capabilities of fuzzy and genetic fuzzy system approaches in urban trip distribution modelling with some new features. First, a simple fuzzy rule-based system (FRBS) and a novel genetic fuzzy rule-based system [GFRBS: a fuzzy system improved by a knowledge base learning process with genetic algorithms (GAs)] are designed to model intra-city passenger flows for Istanbul. Subsequently, their accuracy, applicability and generalizability characteristics are evaluated against the well-known gravity- and neural network (NN)-based trip distribution models. The overall results show that: traditional doubly constrained gravity models are still simple and efficient; NNs may not show expected performance when they are forced to satisfy trip constraints; simply-designed FRBSs, learning from observations and expertise, are both efficient and interpretable even if the data are large and noisy; and use of GAs in fuzzy rule-based learning considerably increases modelling performance, although it brings additional computation cost.en_US
dc.language.isoengen_US
dc.publisherTaylor & Francisen_US
dc.relation.isversionof10.1080/03081060.2013.770946en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSpatial interaction modelsen_US
dc.subjectFuzzy logicen_US
dc.subjectGenetic algorithmsen_US
dc.subjectTrip distributionen_US
dc.subjectLearning algorithmsen_US
dc.subjectNeural networksen_US
dc.titleModelling trip distribution with fuzzy and genetic fuzzy systemsen_US
dc.typearticleen_US
dc.contributor.iztechauthorKompil, Mert
dc.contributor.iztechauthorÇelik, Hüseyin Murat
dc.relation.journalTransportation Planning and Technologyen_US
dc.contributor.departmentIzmir Institute of Technology. City and Regional Planningen_US
dc.identifier.volume36en_US
dc.identifier.issue2en_US
dc.identifier.startpage170en_US
dc.identifier.endpage200en_US
dc.identifier.wosWOS:000315689900002
dc.identifier.scopusSCOPUS:2-s2.0-84876292364
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record