• English
    • Türkçe
  • English 
    • English
    • Türkçe
  • Login
View Item 
  •   DSpace Home
  • 3. Mühendislik Fakültesi / Faculty of Engineering
  • Chemical Engineering / Kimya Mühendisliği
  • View Item
  •   DSpace Home
  • 3. Mühendislik Fakültesi / Faculty of Engineering
  • Chemical Engineering / Kimya Mühendisliği
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Realtime Access Map

Modeling of diffusion in closed cell polymeric foams

Thumbnail
View/Open
Makale (1.610Mb)
Date
1999-05
Author
Alsoy, Sacide
Metadata
Show full item record
Abstract
Closed-cell foams made of polymers have the lowest thermal conductivity of any currently available insulation material other than vacuum insulation systems. The increase of foam conductivity with age occurs as air diffuses into the foam while the blowing agent diffuses out, thus modifying the cell gas composition. Also, the change in cell gas composition influences the dimensional stability of the foams. To predict the long term aging behavior and dimensional stability of these foams, the diffusion characteristics of the different components need to be known. Several models exist in the literature which describe diffusion in foams. The most popular of these models are reviewed, and effective diffusivities predicted from one model are compared with experimental data. An unsteady state model is then proposed and solved numerically using a finite difference scheme. The numerical solution algorithm is developed to efficiently solve the large number of coupled equations resulting from this model. The uptake curves predicted from both the unsteady-state model and a discrete model (Bart and Du Cauze De Nazelle, 1993) are compared with available experimental data for the polystyrene-nitrogen system. From the analysis of uptake curves generated for different numbers of cells, the effective diffusivity of the PS/N2 system is predicted. Also, the effect of initial cell gas composition and cell size on both the long term aging profile and dimensional stability of polyurethane foam is considered. The proposed model can easily be extended to include the influence of blowing agent concentration on diffusivity in the polymer phase and the isotherm describing the distribution of blowing agent between the gas and polymer phases.
URI
http://hdl.handle.net/11147/4521
Collections
  • Chemical Engineering / Kimya Mühendisliği [378]
  • Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection [3276]
  • WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection [2953]


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 



| IZTECH OS Policy |
DSpace@IYTE Guide |

DSpace@IZTECH

by OpenAIRE
Advanced Search

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeIZTECH AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeIZTECH Author

My Account

LoginRegister

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| IZTECH OS Policy || DSpace@IYTE Guide || Library || IYTE || OAI-PMH ||

IZTECH Library, Gülbahçe Kampüsü - 35430 - Urla, İzmir / TURKEY
If you find any errors in content, please contact: openaccess@iyte.edu.tr.

Creative Commons Lisansı
DSpace@IZTECH by IYTE Institutional repository is licensed under a Creative Commons Attribution-Gayriticari-NoDerivs 3.0 Unported License.

DSpace@IZTECH is member of: