• English
    • Türkçe
  • English 
    • English
    • Türkçe
  • Login
View Item 
  •   DSpace Home
  • 1. Fen Fakültesi / Faculty of Science
  • Molecular Biology and Genetics / Moleküler Biyoloji ve Genetik
  • View Item
  •   DSpace Home
  • 1. Fen Fakültesi / Faculty of Science
  • Molecular Biology and Genetics / Moleküler Biyoloji ve Genetik
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Realtime Access Map

MsrB1 (methionine-R-sulfoxide reductase 1) knock-out mice: Roles of MsrB1 in redox regulation and identification of a novel selenoprotein form

Thumbnail
View/Open
Makale (700.2Kb)
Date
2009-02
Author
Fomenko, Dmitri E.
Novoselov, Sergey V.
Natarajan, Sathish Kumar
Lee, Byung Cheon
Koç, Ahmet
Carlson, Bradley A.
Lee, Tae- Hyung
Kim, Hwa-Young
Hatfield, Dolph L.
Gladyshev, Vadim N.
Metadata
Show full item record
Abstract
Protein oxidation has been linked to accelerated aging and is a contributing factor to many diseases. Methionine residues are particularly susceptible to oxidation, but the resulting mixture of methionine R-sulfoxide (Met-RO) and methionine S-sulfoxide (Met-SO) can be repaired by thioredoxin-dependent enzymes MsrB and MsrA, respectively. Here, we describe a knock-out mouse deficient in selenoprotein MsrB1, the main mammalian MsrB located in the cytosol and nucleus. In these mice, in addition to the deletion of 14-kDa MsrB1, a 5-kDa selenoprotein form was specifically removed. Further studies revealed that the 5-kDa protein occurred in both mouse tissues and human HEK 293 cells; was down-regulated by MsrB1 small interfering RNA, selenium deficiency, and selenocysteine tRNA mutations; and was immunoprecipitated and recognized by MsrB1 antibodies. Specific labeling with 75Se and mass spectrometry analyses revealed that the 5-kDa selenoprotein corresponded to the C-terminal sequence of MsrB1. The MsrB1 knock-out mice lacked both 5- and 14-kDa MsrB1 forms and showed reduced MsrB activity, with the strongest effect seen in liver and kidney. In addition, MsrA activity was decreased by MsrB1 deficiency. Liver and kidney of the MsrB1 knock-out mice also showed increased levels of malondialdehyde, protein carbonyls, protein methionine sulfoxide, and oxidized glutathione as well as reduced levels of free and protein thiols, whereas these parameters were little changed in other organs examined. Overall, this study established an important contribution of MsrB1 to the redox control in mouse liver and kidney and identified a novel form of this protein.
URI
http://dx.doi.org/10.1074/jbc.M805770200
http://hdl.handle.net/11147/2854
Collections
  • Molecular Biology and Genetics / Moleküler Biyoloji ve Genetik [290]
  • Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection [3276]
  • WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection [2953]


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 



| IZTECH OS Policy |
DSpace@IYTE Guide |

DSpace@IZTECH

by OpenAIRE
Advanced Search

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeIZTECH AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeIZTECH Author

My Account

LoginRegister

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| IZTECH OS Policy || DSpace@IYTE Guide || Library || IYTE || OAI-PMH ||

IZTECH Library, Gülbahçe Kampüsü - 35430 - Urla, İzmir / TURKEY
If you find any errors in content, please contact: openaccess@iyte.edu.tr.

Creative Commons Lisansı
DSpace@IZTECH by IYTE Institutional repository is licensed under a Creative Commons Attribution-Gayriticari-NoDerivs 3.0 Unported License.

DSpace@IZTECH is member of: