Show simple item record

dc.contributor.authorAkhmet, Marat
dc.contributor.authorTleubergenova, M. A.
dc.contributor.authorYılmaz, Oğuz
dc.date.accessioned2016-09-20T12:28:38Z
dc.date.available2016-09-20T12:28:38Z
dc.date.issued2008-08
dc.identifier.citationAkhmet, M., Tleubergenova, M. A., and Yılmaz, O. (2008). Asymptotic behavior of linear impulsive integro-differential equations. Computers and Mathematics with Applications, 56(4), 1071-1081. doi:10.1016/j.camwa.2007.08.050en_US
dc.identifier.issn0898-1221
dc.identifier.urihttp://doi.org/10.1016/j.camwa.2007.08.050
dc.identifier.urihttp://hdl.handle.net/11147/2158
dc.description.abstractAsymptotic equilibria of linear integro-differential equations and asymptotic relations between solutions of linear homogeneous impulsive differential equations and those of linear integro-differential equations are established. A new Gronwall-Bellman type lemma for integro-differential inequalities is proved. An example is given to demonstrate the validity of one of the results. © 2008 Elsevier Ltd. All rights reserved.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.isversionof10.1016/j.camwa.2007.08.050en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAsymptotic equilibriaen_US
dc.subjectAsymptotic equivalenceen_US
dc.subjectImpulsive integro-differential equationsen_US
dc.subjectLinear systemsen_US
dc.titleAsymptotic behavior of linear impulsive integro-differential equationsen_US
dc.typearticleen_US
dc.contributor.authorIDTR1568en_US
dc.contributor.iztechauthorYılmaz, Oğuz
dc.relation.journalComputers and Mathematics with Applicationsen_US
dc.contributor.departmentIzmir Institute of Technology. Mathematicsen_US
dc.identifier.volume56en_US
dc.identifier.issue4en_US
dc.identifier.startpage1071en_US
dc.identifier.endpage1081en_US
dc.identifier.wosWOS:000258051200023
dc.identifier.scopusSCOPUS:2-s2.0-46049118217
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record