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ABSTRACT

QUANTUM DYNAMICS OF NOISE ASSISTED EXCITATION
TRANSPORT

In this thesis, different types of systems are studied to investigate the effects of the
environmental factors on diffusion and transfer time. Each system consists of different
energy levels and excitation transfers between them. The mismatch between the energy
levels leads to the Anderson localization. Localization has a negative effect on transport.
It is shown that Anderson localization is suppressed due to interaction with the environ-
ment. To describe the dynamical evolution of the open quantum system Lindblad master
equation is used. The transition times of the system from the pure state to the completely
mixed state are examined with the help of the density matrix. In consequence of our
study, because of the interaction between the system and environment the change in the
wavefunction, the loss in the interference terms and an irreversible information ow in the
total system are observed. Destructive effects of the environmental noise on localization
are observed for different scenarios and diffusion enhanced. However, when the interac-
tion with the environment becomes larger than a critical value, the system exhibits Zeno
effect. In the Zeno regime, the time evolution of the quantum state of the system as well
as the diffusion is suppressed.



OZET

GURULTU ETKISINDE UYARIMLARIN TASINIMININ KUANTUM
DINAMIGI

Bu tezde, a¢ k kuantum sistemlerinde ¢evresel etkilerin sistemiaybih ve tas n m
sureleritizerindeki etkileri ¢cal s Im st r. Her bir sistem farkl enerji seviyelerinden olusur
ve egziton bu seviyeler aras nda transfer olur. Enerji seviyeleri aras ndaki bu fark Ander-
son lokalizasyonuna neden olur. Lokalizasyonun trarisferinde negatif bir etkisi vard r.
Cevre ile etkilesimler sayesinde Anderson lokalizasyonun agadgsterilmistir. Ag¢ k
kuantum sisteminin zaman icerisindekigiggmini matematiksel olarak ifade edebilmek
icin Lindblad master denklemi kullan Im st r. Yonluk matrisinin yard m yla sistemin
saf durumdan karmas k duruma gedigederi incelenmistir. Cal smalar m z sonucunda,
cevre ve sistem aras ndaki etkilesim nedeniyle dalga denkleminirgigimie girisim ter-
imlerinde kay p ve sistemde teloglu bilgi kayb gozlemlendi. Cevreseligultinin baz
bolgelerde lokalizasyofizerindeki yok edici etkisi farkl durumlar icindglemlendi ve
tasnm hzland. Ancak cevre ile etkilesim kritik gierden Biyik oldug unda, sistem
Zeno alan n nozelliklerini gosterdi. Zeno alan nda sistemin kuantum durumlar n n za-
man igerisindeki dgisimi ve difizyon bask land .
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CHAPTER 1

INTRODUCTION

Excitation transport in open quantum systems is a highly crucial topic nowadays
and concepts of the mechanism of several physical systems. Energy transfer in photo-
synthetic system(Lee, Cheng, and Fleming 2007; Ishizaki and Fleming 2012; Rebentrost
et al. 2009; Engel et al. 2007) and Rydberg gasesiSeber et al. 2015) are generally
preferred as a model to study these mechanisms.

The Fenna-Matthews-Olson protein complex which is present in the green sulphur
bacteria used as a prototype to explain the effects of the quantum coherence on energy
transfer in photosynthetic systems. Green sulphur bacteria consists of chlorosome an-
tenna and the Fenna-Matthews-Olson protein (Blankenship 2014). When light harvesting
antenna interacts with light, the Fenna-Matthews-Olson protein achieves energy transfer
between the chlorosome antenna complex and reaction center. On the other hand Rydberg
atoms generally used to observe coherent excitation transfer experimentally because of
their controllability(Singer et al. 2004; Saffman, Walker, and Mglmer 2010). They can be
used as background atoms around aggregate atoms and act like environménltelsah
et al. 2015). When laser is applied to the system, the background atoms get transparent.
However, the strong interaction between Rydberg atoms disturbed transparency. When
transparency lost, atoms become detectable and excitation transport can be observed. In
the classical limit excitation transfer is described by Brownian motion which is result
in very long transfer times with low transfer ef ciency. On the other hand according to
guantum mechanical description, the system should exhibit Anderson localization which
again leads to low transfer ef ciency. Therefore, it is important to model these systems as
an open quantum system taking into account the quantum mechanical effects as well as
noise due to environment

An open quantum system interacts another quantum system with a high number
of degrees of freedom which is called the environment (Breuer and Petruccione 2002).
Both open system and environment compose to total system together. The total system
generally is a closed system and evolves under unitary dynamics. Unlike closed quantum
systems, the interaction between the system and the environment leads to a different dy-
namical evolution in the open quantum system. Since there is a noise on the environment,
the dynamics of the open system should also contain a non-unitary part as well. This part



includes a dephasing term which is responsible for the decay of the coherences.

In this thesis, the effects of the noisy environment on the quantum transfer ef -
ciency for different systems was investigated. As a basic toy model, rsttwo-level system
was studied. Then a ring, a ribbon and a two-dimensional lattice was used as an higher
dimensional cases. For each system, it was assumed that there is an energy difference
between sites which is called disorder. The disorder has a negative effect on quantum
transport and lead to localization (Anderson 1958). To break this localization, dephasing
and arti cial magnetic was introduced into systems.

In open quantum systems, the interaction between the system and the environment
leads to uncertainty in the knowledge of the system state. In this case, the state of the
guantum system was described by using ensemble of the known states by using the density
operator (Joos et al. 2013). To describe the evolution of the density matrix the Lindblad
master equation was used. For each type of system, rst the system Hamiltonian and
Lindblad operators were de ned. Then, boundary conditions were determined. Finally,
the Lindblad master equation was converted to the rst order linear differential form and
this linear equation was solved with MATLAB numerically.

The rst chapter includes a review of some basic concepts of open quantum sys-
tems. In Chapter 2, the effects of dephasing on localization are investigated for two-level
system both analytically and numerically. The changes in the population dynamics of the
density matrix with respect to disorder and dephasing are investigated. Energy difference
between sites(disorder) caused Anderson localization. However, localization is broken
by dephasing in some regions. In Chapter 3, the system is generalized to N sites with
closed boundary conditions. The relation between participation number and entropy is
obtained. Numerical solutions are given for ring of 20 sites in the presence of dephas-
ing. It is observed that, in the weak dephasing regime quantum transport increases. In
Chapter 4, the effects of the arti cial magnetic eld on localization is investigated for a
ring and ribbon type con gurations with closed boundary conditions and a 2D lattice with
open boundary conditions. For ring and 2D lattice, under weak magnetic eld quantum
transfer increases.



1.1. Dynamics of the Open Quantum Systems

An open system is a quantum system which is coupled to another quantum system
called environment. Since there is an information ow between system and environment,
the state of the open system depends on both its own dynamics and also on surround-
ings(Breuer and Petruccione 2002).

Depending on this information ow open systems can be Markovian or non-
Markovion. If there is an information ow from the system to the environment, these
systems are Markovian systems. If there is also back ow information from the environ-
ment to the system, then these systems called non-Markovian open systems.

The total Hamiltonian can be written as

H(t)= Hs 1+% Hg+ Hse(t) (1.1)

whereHs is system Hamiltoniarklg is environment Hamiltonian and sg is the inter-
action Hamiltonian.

1.2. Density Matrix

When there is an incomplete information about a system, we can specify proba-
bility distribution over possible states. The system can be represented as a large collection
of systems in different states with different probabilities. This collection called ensemble.
The same approach can also be used in quantum mechanics too. Instead of specifying a
unique state vectqr i, a collection of state vectors in different states with different prob-
abilities can be listed by using density operator (Joos et al. 2013). The density operator
can be written in terms of an ensemble of normalized states as

X - . .
= Pnj nih q (1.2)

wherep, refers the probability of being in the stateg i. Total probability must be equals

toland0 p, 1 X

pr =1 (1.3)



Any density matrix satisfy the following properties: (Schaller 2014)
Normalization:tr( ) =1
Positivity: h j j i O
Hermiticity : Y =

In the matrix formalization

1
p11h 1 J ol opinho) J N

-8 - (1.4)

leh Nj oAl pan N )N

The diagonal elements of the density matrix represent the population terms while
the off-diagonal elements represent the interference terms. The interference terms deter-
mine the correlation between states which is called coherence. Eventually because of the
interactions between system and environment these terms decay. This is called dephasing.
For pure states (Ableitinger et al. 2008)

tr 2=1; (1.5)
For mixed states

tr 2< 1: (1.6)

The evolution of the density operator is different for pure states and mixed states.
A system called as in a pure state if we know where the system exactly is. For pure states
density operator can be written as

=7 ih (1) (1.7)
and evolves according to Liouville-von Neumann equation.
d .
q 0= iHO: )] (18)

However, in open quantum systems because of the interaction between the system and
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environment, there is a partial knowledge or no knowledge of the system and these system
states called mixed states. For mixed states it is not relevant to use unitary evolution and

the Liouville-von Neumann equation needs to be modi ed.
d . _
gt SO = reH®); (1) (1.9)

To do that reduced system dynamics can be used and to obtain the reduced system dy-
namics environment degrees of freedom can be traced out.

s=1tre (1.10)

1.3. The Lindblad Master Equation

The Lindblad master equation (Lindblad 1976) is a rst order differential equation
and describes the equation of motion of the density matrix. It can be derived from the
Liouville-von Neumann equation by using two approximations (Breuer and Petruccione
2002). These are Markov approximation and Born approximation.

The combined Hamiltonian consists of three parts and can be written as

A(t) = Bs+ Ae + Ase; (1.11)

whereHs, Be andHAse describe system Hamiltonian, environment Hamiltonian and
interaction Hamiltonian respectively. By the Liouville-Von Neumann equation

- h i
— = - HAs+ Fe + Fse; "se (1.12)

Equation (1.12) can be written in the interaction picture as

g = - V(U (1.13)



where
Nt) = ei:('qS”qE)t’\SE(t)e L(ARs+He)t (1.14)

and
V(t) = eMs*Helt e “(HstHelt, (1.15)

Here X indicates the total Hamiltonian in the interaction picture.
The integration of Equation (1.12) yields

i Zth i
D=0 = V@A) dtt (1.16)
0

Substituting Equation(1.15) into Equation (1.12), Equation (1.12) becomes

d ih i Zh i
EA“): - V@;N0) S O; i V(t9; AtY dt° : (1.17)

where
(t)= e s(b): (1.18)

According to the Born approximation, the environment has a large number of degrees
of freedom and not affected by coupling much. Therefore, it is possible to trace out
environment degrees of freedom.

Equation(1.17) will be

d i nh io 4 Zth i
G 30= e VN0 Sre V@ VN0 d° : o (119)
0

Assume that
tre[V(t); (0)]=0 (1.20)

Therefore, ; . Z . i
a’\s(t): Stre V(@) 099 dt® (1.21)
0

After inserting the Equation (1.18) inside the integral in the Equation (1.20), Equation
(1.20) becomes

q 141 h i
= 5 ditre V@ V) 200 (1.22)

2
0



Equation (1.22) is called Born-Markov master equation. The interaction Hamiltonian is
de ned as (Brasil, Fanchini, and Napolitano 2013)

Rse = ~«(SEY + OE) (1.23)

whereS indicates the part of the Hamiltonian that acts only on the systerkcandicates
the part of the Hamiltonian that acts only on the environment.
If $andHs commute,

[S;Hs]=0; (1.24)

Then the systen® does not depend on time. In the case of a Bosonic environment, the
environmental part of the Hamiltonian can be written as

X
Ae =~ wald: (1.25)

k

& and#) indicate the annihilation and creation operators for environment respectively
andw are the characteristic frequencies of each mode.
The environment operator is de ned in the interaction picture as

X .
E= gae W (1.26)

k

whereg; are coupling constants. Inserting these assumptions into the Equation (1.20)

q Zi n h io
a"s(t): tre SE@) EYM)S ; (SE(MY  EY(tYS); % (0)7s(tY  dt®
° (1.27)
De ne
n 0 n (0]
tre EQQEY() =tre EYEOEM) ) = EYIIE() (1.28)
and n (0] n (0]
tre EYAOE():(0) =treg EYHYIE()":(0) =0: (1.29)



The equation can be written in the form

%%(t) - Zot dt® [$ s(198 &S (9] E(HEY(L)
+[S s(18  S(tYSS] E(IE (1)
+[S 598 SY (19 EY(E(H
+[S s(t9S  s(t9SS] E(tYE(t)
[S¥ s(t98Y (8% s(t9] E(E(Y
[S 5199 s(tY(S)7] E(OE()
[S s(t9S S (9] EY(HEY(t)
[S s(t9S  s(t957 EY(IEY(t)

(1.30)

%%(t): [SSY4(t) M8 EYOER)  [s()SS] ERIEY(t)
[SS (1) S EMEYY  [s(1)SS & (1)S] EYIE() (1.31)

If the environment is initially in the vacuum state

A =(j0ij0i ) (hojhoj:::) (1.32)
Then n o
EYUYE®) =trg EYUIE(t)*=(0) =0 (1.33)
and
EMEY(tY) = EWIHEY(Y) (1.34)
where
X Z
EMEY(Y) =  glge dit%e It i) (1.35)
k:k© 0

Consider the environment as a harmonic oscillators. To understand the characterization of
the frequencies of the bath modes and the coupling between the environment and system,
spectral density can be de ned as



X
Jw)= " jgj® (W w): (1.36)

n

The Equation (1.35) can be expressed in terms of the spectral density as

z 1 Z t
EMEY(tY) = dwJ(w)  dt% W . (1.37)

0 0

The integral can be simpli ed by using change of variable

=t t%
d = dt®
Therefore, Z, Z,
EMQEYAY = dwJ(w) de ™ : (1.38)
0 0

According to the Markov approximation, the memory time of the environment is shorter
than the time scale of the system. In other words, system has no memory effects. When
limit as t goes to in nity, by the Cauchy principle value integral

Z . | L
dre " = () iP= (1.39)
0
Therefore,
EQEYXY) = (w) ipv—lv (1.40)

whereP refers to Cauchy principle part and contains imaginary part. This part is
responsible for the frequency shift.
Equation 1.39 becomes

Z,

I

dwJ(w) (w) iP (1.41)
0

To simplify the equation, de ne

Z,

2 dwJ(w) (w) (1.42)
0



and

2P ' de (1.43)
0 w
Then Equation 1.41 becomes _
+i
5 (1.44)
and Equation 1.31 will be
5 30 = NOBEEELYO K 5 &815(t) SAM)S > (1.45)
For the case =0
d h i
0= 5 r)SYS 8 51+ SY8(1)  SAs(D)SY (1.46)
/\S(t) — ei:*qs(t)ASe LAs(1) (1_47)

Using Equation (1.46), transform Equation (1.45) to the initial picture form

h [

. h i
dd_,tgz Eﬁs;"s + SASY :—ZLféyéi’\sgi (1.48)

General form of the Lindblad equation is

d A — i N X h[’_\ A Cy 1Cyc A 1/\ Cyﬁ |
gt 57 :[Hs.s]"' n bn%sbkn o Shabta®s 5%knkn (1.49)

n

where indicates dephasing term aficoperators are Lindblad operators.

Lindblad master equation can be examined in two parts. The rst term on the right hand
side of the equation describes the unitary evolution of the density operator.

The second term describes possible transitions and non-unitary evolution of the density
matrix. This term includes dephasing term and Lindblad operators and describes possible
transitions.

10



1.4. Anderson Localization

According to Einstein, at too short scales process is not Markovian. There is a
memory effect and there is no diffusion. On the other hand, at large scales if the system
has no memory there will be always diffusion. (Einstein 1905)

2 = Dt (1.50)

whereD is the diffusion constant.

According to Anderson, it is not always true for quantum particles. The wave is co-
herently scattered by impurities. Interferences of multiple scatterings with higher return
probability leads to quantum correction to diffusion. If disorder is strong enough, for
in nitely long time disorder may leads to localization (Anderson 1958)

hr 2il ,  constant (1.51)

and

@ (b)

Figure 1.1. The wave function of (a)extended state, (b)localized state
Source: (Lee and Ramakrishnan 1985)

11



The wave function decays

(9] exp LTl (152)

where is localization length andis the mean free path.
Since dephasing leads to loss of the interference terms, in this study we used
dephasing to break Anderson localization.

12



CHAPTER 2

DELOCALIZATION IN A TWO LEVEL SYSTEM WITH
DISORDER

As a basic toy model rst a two level system was studied. Energy difference
between sites which is called disorder was introduced to the system and effects of disorder
on localization was observed. To break the localization dephasing was introduced to the
system. The Hamiltonian of two level system for a s%)iparticle in the presence of the

Figure 2.1. A two-level system with a hopping strengt2

single excitation is
Hs = é(jlihlj j 2ih2j) + %(jlith + j2ih1j) (2.1)

where indicates site energies and v is the hopping strength between two jditesnd
j2i refer to the localization site of the particle.
The system Hamiltonian can be written in terms of Pauli spin matrices as

% (2.2)

H= -B; (2.3)

13



The magnetic dipole moment of a spinning charge particle which is proportional to spin
angular momentum$) is
~= S (2.4)

where s the gyromagnetic ratio.
In terms of the gyromagnetic ratio, the Hamiltonian can be written as

H= SB: (2.5)

H=( )B= (2.6)

where®= cos 2+ sin R is the unit vector in thez plane.
The Larmor frequency is de ned as

2
= —+ —: (2.7)

Initially particle localized at site 1 and system rotates in the x-z plane. Eventually, displays
from z axis by .
Density matrix can be written in terms of Pauli spin matrices as

. %(1+ ) (2.8)

which can be represented in the matrix formalism as

1+n, ny iny

1
=3 (2.9)

ny+iny, 1 n,

wheren = (ny; ny; n;) is an arbitrary real vector.

Bloch sphere is a graphical representation of two level systems. (Nielsen and
Chuang 2010) The points on the top of the sphéreand the bottom of the sphej#i
represent excited and ground states or spin up and spin down states. These points refer to
pure states. The radius of the Bloch sphere can be used to determine whether the system
mixed or pure. If radius is one, the point is on the surface of the sphere and indicates pure
state. If radius is less than one the point is inside the sphere and corresponds to the mixed

14



Figure 2.2. Bloch sphere for spi2 particle.j i is any qubit represented by angles
and where0O andO 2 andr is the radius of the Bloch
sphere Source: (Nielsen and Chuang 2010)

state.
The qubitj i can be represented as a linear combingg@omandjgi

ji= coséjei + ¢ sinéjgi ; (2.10)

Here, and are the arbitrary real numbergei andjgi are the excited state and the
ground state respectively.
The Lindblad master equation for two level system is given by

. xe 1 1
= s T+ A DAL DAL (O 5 MAIA] (24D)

n=1

whereA, are projection operators. For a two level system, there are two different projec-
tion operatord\; = jlihlj andA, = j2ih2j respectively.
The Lindblad master equation in terms of the Bloch vectors is

1+‘H"'] 1+
2

= il 5 (M x+ Ny y) (2.12)

15



~-_ _ -
] (M 7) (R n.) (2.13)

The nal form of the equation is

n :
> f E(ﬂ n,): (2.14)

2

Equation (2.13) can be written in the matrix form to simply the calculations

2 3 2 32 3
Ny 0 Ny

B L=5 v, @.15)
n, O v O n,

where is disorder, is dephasing andis a hopping strength between two sites.

@ (b)

Figure 2.3. The time evolution of the diagonal elements of the density matrix.(a) in the
absance of disorder (b) in the presence of disorder

Initially, particle is localized at site 1. In Figure 2.3.a, there is no energy differ-
ence between sites. Since there is no disorder, particle can easily hops between the site
one and site two with a hopping strength v. In the Figure 2.3.b, there is an energy differ-
ence(disorder) between sites.changes between 1 and 0.5 but cannot reach -1 (site 2).

In this case disorder leads to localization.

16



To break this localization, different values of dephasing introduced to the system.
According to Figure 2.4, when dephasing increases uctuations decreases and system

Figure 2.4. Time evolution of the diagonal elements of the density matrix for three
different dephasing values in the presence of disorder

becomes mixed faster. Therefore, introducing dephasing can break the localization.
For the case = 0 the solution of the linear system in Equation (2.13) is

Ny = N
n= vn, n, (2.16)
n, = vny

n,+ ng+vn, =0 (2.17)

System behaves like a damped harmonic oscillator+ x+ ! 2x = 0) with the
roots:

2
r= = — V2 (2.18)

2 4
There are three different cases for a damped harmonic oscillator
v2 > 0over damped
v2 = 0 critically damped

4
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v2 < 0 under damped

where =v = 2 is critical point

Figure 2.5. The evolution of the diagonal elements of the density matrix for three dif-
ferent dephasing values in the absance of disorder

When the Lindblad master equation is solved for different dephasing rates, three
different case are obtained. Figure 2.5 shows the time evolution of the diagonal elements
of the density matrix for three characteristic values .ofAccording to Figure 2.57v = 2
is the critical point for this system. Forv > 2 overdamped oscillation is observed while
for =v < 2, underdamped oscillation is observed.

18



CHAPTER 3

TRANSPORT ON A DISORDERED RING

In this chapter as a higher dimensional model a ring was studied. Random energy
differences between sites which is called disorder was introduced into the system. Then
dephasing was addded to remove the effect of disorder and to break the Anderson local-
ization. To solve the dynamical evolution of the system Lindblad master equation was
used in the more general form with closed boundary conditions.

Figure 3.1. N-site ring with a nearest neighbors hopping

The Hamiltonian of N level system in the presence of single excitation is (May
et al. 2008)
X X
Hs = m(jmihmj) + Vmn (Jmihnj + jnihmyj) (3.1)
m=1 n<m

where ,, indicates site energies amgl, is the hopping strengths only between the nearest
neighbour interactiongni andjmi is the localization site of the particle at site n and m
respectively. The equation of motion for the density operator is given by

M= “Hs: O]+ L( ©): (3.2)

where
X

LC@)= A OAF JAAL () 5 (DAA] 33)

n

19



Here Lindblad operators are projection operatdts.= jnihnj and is pure dephasing
rate.
Lindblad master equation is impractical for calculations especially for higher level sys-
tems. To simplify the calculations we converted Lindblad master equation into the rst
order linear differential form. To do that we mapped density matrix to the density vector
form by using f function

f(;j)=(i 21N +j: (3.4)
In our systems the Hilbert space is a N dimensional space. When converting density ma-
trix to density vector form, we are mappifg N matrix to N? dimensional vector.
(Schaller 2014)
After using this mapping density matrix becomes

0 1
11

0 :
11 .-
:%; ;ﬁ,jj i =g " (3.5)
21
N1 NN .
NN

This process decreases our dimension of work space and makes easier our calculations.
Eventually Lindblad master equation gains linear form

=L (3.6)

Here is aN? dimensional vectorand L id2 N2 matrix. In our systems complexity
scales with O(6) foN? N?2 L matrix.

The equilibration time was de ned by taking weighted average over diagonal elements
of the density matrix. Equilibration time describes diffusion dynamics of the diagonal

elements of the density matrix.

P . . 1 + . : 1 + 4+ 1 I 1
niCiniret o nIGnlre( oy Tt 0 IGnlRe(
teq = p_— (3.7)
in JGn)
here
w X t
=7 e (3.8)
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Here, is eigenvalues df matrix.
The random disorder was introduced into the system@$s O:5where = =v.

Figure 3.2. The relation between the equilibration time and dephasing rate for ring of
20 sites

According to Figure 3.2, when disorder increases entropic time increases. Disorder leads
to localization. To break the localization we introduce dephasing into the system. If
dephasing is weak (< 4), equilibration time decreases withand quantum transfer
increases. However at the strong dephasing regime, particle enters Zeno regime and time
increases again.

In the Zeno regime because of the frequent measurements system cannot evolve and quan-
tum transfer always suppressed. Here, dephasing acts like measurement on the system and
suppressed quantum trasnport (Misra and Sudarshan 1977).

To understand whether system mixed or pure we used entropy and participation number
de nition.Von Neuman entropy can be calculated from (Neumann 2013)

S()= trlog;:: (3.9)

If entropy is zero that indicates system is in a pure state and pure quantum states corre-
sponds to maximum information. When system becomes mixed entropy increases and in
that case there is a missing information.
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For completely mixed state entropy reaches maximum value and can be calculated from
1 1 1
—1)= —tr(logp—1) = log,N: A
S(yh = rlogy1) = log (3.10)
We de ned participation number as

PN = 2 (3.11)

Participation number describes the diffusion dynamics of the system and can be expressed
in terms of the diagonal elements of the density matrix.
Initially particle is localized at the middle site.

Figure 3.3. The relation between participation number and entropy with respect to time
for ring of 20 sites

Since there is a localization, participation number is 1. According to Figure 3.3, even-
tually participation number increases and converges to its minimum value. On the other
hand,initially entropy is O because system is in a pure state.

When system becomes mixed, entropy increases and attains its asymptotic value which

can be calculated as

1
S(5gL) = 100,20 = 4:32 (3.12)

for ring of 20 sites.
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3.1. Rate Equations for a Ring (Zeno Regime)

In this part the Lindblad master equation was solved analytically. The quantum
transport in the strong dephasing regime0 (Zeno regime) was investigated.
The Lindblad master equation is

= i[H; ]+ EL[ ]: (3.13)

By the Einstein summation convention

_om — (an km nkam) nm (1 nm) (3-14)
X
= (n mm m nm) IV ( n+:m nm+ ) nm (1 nm ) (3.15)

=1
where ,, and , refers to site energies.

If n=m, the rst terms of the equation gives zero. Then equation becomes

o =iV ( n+on nn+ ) (3.16)

=1
If n & m, there is a mismatch between site energies.

X
om — nm e~ iv ( n+ :m nm + ) (3-17)
= 1

where \m =( n  m). Integrate both sides of the Equation (3.17)

| Zy X
= Gm* )t ) i e (mE XUy (neom  nme )ldt (3.18)

0 = 1

In case of a strong dephasing ( v), rstterm yields zero. Hence

. 1 X
nm= N———- ( n+ :m n;m + ) (319)

1 nm —
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case 1If =0, thereis no disorder
Lettingn = m in Equation (3.16) yields

oon = |V( n+1l;n + n 1n n;n+1 n;n 1): (3-20)

If n & m from the Equation (3.19), we get

. 1
nm = |V( n+1l;n + n 1n n;n+1 n;n 1)_: (3-21)

Insert Equation (3.21) into Equation (3.20) and assume that there is only nearest neigh-
bour interactions

_ Civ)(iv)

_on — —[( n;n+ n+l;n+1+ n;n n 1n 1 n+1;n+1+ n;n n 1n 1+ n;n]
(3.22)
Equation (3.22) can be reduced to the form

V2
on = _[4 nn 2( ntin+l ¥ n 1n 1)]: (3-23)
For a two level system
V2
a1 = —[ 4 11+4 2] (3.24)
V2
22 = —[ 4 2+4 4] (3.25)
P
where | 5, =0
case 2 Disorder different than zero
By the Equation (3.20)
w = IV( ntint n 1n n:n+1 n:n 1) (3.26)
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and the Equation (3.19)

. 1
nm = |V( n+l;n + n 1n n;n+1 n;n 1) i (3-27)
I nm
Insert the Equation (3.27) into Equation (3.26)
. . 1 1
nn :( |V)( |V)[(—( n;n n+1;n+1)+ . ( n;n n 1n 1))
+ 1 n+1l;n + 1 n 1n
1 1
+ : )+ . w1+
¥ n;n+l( n+1l;n n,n) 4 N 1n 1( n 1n 1 n,n)]
1 1 1 1
— /2
=V - + - + : + :
o [( + 1 n+l;n + 1 n 1n + 1 n;n+1 + 1 n;n 1)( nn)]
1 1
+v2 . + . :
[( + | n+l;n + | n;n+1 )( n+lin+l )]
1 1
+v?2 : + . :
[( + 1 nn 1 + 1 n 1n )( noan 1)]
The equation becomes
v?2 v?2 v?2 v?2
e _( 2+ ﬁ+1;n( n+1;n+1)+ 2+ % 1;n( "o 1) 2+ %+1;n( n;n) 24+ % 1;n( nn)
Let us assume that ,
\Y
n+1l;n
and
VZ
n 1n
Then, the result can be written in the form
_oon = (A + B) mt A e B oo 1 (330)

In the Zeno regime, there are only population terms. If dephasing is strong enough, coef-
cient A and B proportional tot. When increases diffusion rate decreases.
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CHAPTER 4

THE EFFECTS OF THE MAGNETIC FIELD ON
TRANSPORT

In this chapter, the effects of the arti cial magnetic eld on localization was inves-
tigated in addition to dephasing. A ring and a ribbon with closed boundary conditions and
a two-dimensional lattice with open boundary conditions was used. The Aharanov-Bohm
phase was introduced into these systems to break the Anderson localization.

According to the Aharonov-Bohm effect, when a charged particle moves along a
closed path in the presence of a vector potential, it acquires a geometric phase after com-
pletes one tour. This phase called Aharonov Bohm phase (Aharonov and Bohm 1959).

I
AB = g A dr (4.1)

4.1. Transport on a Ring

Figure 4.1. N-site ring with nearest neighbor hoppings =™ andve =™ under arti-
cial magnetic eld where = N
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The Hamiltonian of N level ring in the presence of single excitation under the

magnetic eld is
X _ :
Hs = n(jnihnj) + (ve ' jnihn+1j+ vé jn+ 1lihnj) (4.2)

where , are site energies anak ' are hopping strengths only nearest neighbours.

where
= =N (4.3)

and is Aharanov- Bohm phase which is called Peierls phase on lattice.
The extra phase terms is introduced to the system as

zZ,
v! vexfi A dr) (4.4)

Mn

(a) (b)

Figure 4.2. The relation between the dephasing and time for a ring of 20 sites under
the magnetic eld (a) for equilibration time (b) for entropic time

According to Figure 4.2, in the weak dephasing regime time decreases with de-
phasing while in the strong dephasing regime time increases again. In the Figure 4.2.a,

Zeno regime can still be observed.
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(@) (b)

() (d)

Figure 4.3. The relation between magnetic eld and time for a ring of 20 sites (a) for
equilibration time (b) for entropic time (c) for equilibration time scaled
down to 100-120 (d) for entropic time scaled down to 18-21

Figure 4.3 shows the relation between magnetic eld and time for different values
of dephasing. According to Figure 4.3.a and 4.3.b, the magnetic eld is independent of
time. However on a closer inspection it is possible to see the effects of magnetic eld on
localization clearly. According to Figure 4.3.c and 4.3.d, when = 2 time decreases
with magnetic eld and when> = 2time increase again. So for ring, in some regions
magnetic eld can increase the quantum transport.

In this case in addition to equilibration time dephasing relation the entropic time
dephasing relation was also investigated tg. was described from the entropy de ni-
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tion. According to Figure 4.4, indicates the time where entropy reaches maximum value
andt®is an entropic time for our calculations.

Figure 4.4. The relation between entropy and time wherel 1=¢

Then the effects of the magnetic eld on both participation number and entropy
for ring of 20 sites was investigated.

Figure 4.5. The relation between participation number and entropy with respect to time
for ring of 20 sites under magnetic eld

According to Figure 4.5, entropy and participation number are inversely propor-
tional to each other. For aring, magnetic eld is independent of both participation number
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and entropy. Eventually entropy reaches its asymptotic value and participation number
converges to it minimum value.

4.2. Transport on a Ribbon

Figure 4.6. N-site ribbon with nearest neighbor hoppings'= * and ve =4 under
magnetic eld where =4

The Hamiltonian of N level ribbon in the presence of a single excitation under the
magnetic eld is

X X _ _
Hs = n(jnihnj) + (ve ' jnihn+1j+ ve jn+ lihnj) (4.5)

n=1;4;7::

where |, are site energies at the knots ang hopping strength for only nearest neigh-
bours. Z.
v! vexdi A dr) (4.6)

Mn

where
= = (47)

According to Figure 4.7, in the weak dephasing regime time decreases with de-
phasing while in the strong dephasing regime time increases. In the Figure 4.7.a, for
strong dephasing the effects of the magnetic eld on time begin to disappear. However,
Zeno effect can still be observed.
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(@) (b)

Figure 4.7. The relation between the dephasing and time for a ribbon of 30 sites under
the magnetic eld (a) for equilibration time (b) for entropic time

(@) (b)

Figure 4.8. The relation between magnetic eld and time for a ribbon of 30 sites (a)
for equilibration time (b) for entropic time
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Figure 4.9. The relation between participation number and entropy with respect to time
for ribbon of 30 sites under magnetic eld

According to Figure 4.8, time increases with magnetic eld. In the strong de-
phasing regime effects of magnetic eld begin to disappear. When time reaches
maximum value. At this point destructive interferences lead to strong localization.
According to Figure 4.9, when increases entropy attains its asymptotic value and par-

ticipation number converges to minimum value at a later time.

4.3. Transport on a 2D Lattice

The Hamiltonian foN N lattice in the presence of single excitation under the

magnetic eld is

X=5 X _
H = jingngihngngj+ v [€™ jngny +1ihng; nyj
Ny;ny=1

+e ™ jne +1;nyihn,;ngj) + hi (4.8)

Heren, andny indicate lattice sites along the x and y direction respectivelgdicates
site energies and the hopping strength along both directions is given by v. Extra phase
term is introduced into the hopping term and to create the arti cial magnetic eld sym-

metric gauge is used.
A= 22 yix0) (4.9)
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() (b)

Figure 4.10. (a) A two dimensional lattice in the x-y plane with an arti cial magnetic
eld 2 (b) Schematic representation of lattice sites with hopping strengths
ve ' xandve ' vy where = =2

where

According to symmetric gauge, when particle hops nearest neighbors along the x
axis, it gains phase in terms of y while along the y axis it gains phase in terms of x. These
interactions cause extra phase contribution for each plaquette as

According to Figure 4.11, for two-dimensional lattice it is possible to observe
Zeno effect for both entropic time and equilibration time gures. In the entropic time
gure when phi increases equilibration time decreases.

According to Figure 4.12, there are degenerate states in the system initially. These
degeneracies lead to localization. When degeneracies brdakncreases and t de-
creases. As a result, quantum transfer increases. Eventually new degeneracies occur at
the new points and time increases again.

By the energy-time uncertainty relation

E t ~=2 (4.11)
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(a) (b)

Figure 4.11. The relation between the dephasing and timé& fol5 lattice under the
magnetic eld (a) for equilibration time (b) for entropic time

Figure 4.12. Energy-relation for5 5 lattice where =2
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(@) (b)

() (d)

Figure 4.13. The relation between the magnetic eld and timebfor5 lattice (a) for
equilibration time (b) for entropic time (c) for equilibration time scaled
down to 100 to 120 (d) for equilibration time scaled down to 18 to 21

According to Figure 4.12, whenequals td or , there are maximum number of
degeneracies in the system. Therefore, at these points there is a strong localization.

According to Figure 4.13, the relation between the magnetic eld and time for
2D lattice is different from ring and ribbon. There are local maximum and minimum
points due to lifting of degeneracies. According to Figure 4.14, the participation number
and entropy relation fo2D lattice is similar as ring. However for lattice entropy and
participation number are slightly dependent an
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Figure 4.14. The relation between participation number and entropy with respect to time
for5 5lattice under the magnetic eld
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CHAPTER 5

CONCLUSIONS

In open quantum systems, there is an interaction between the system and the envi-
ronment. Therefore, the dynamics of the evolution of the open quantum system is different
than closed quantum system. In addition to the unitary part, the open quantum systems
contains also non-unitary part. The dynamical evolution of the open system can be de-
scribed by Lindblad master equation. In this study the Markovian limit of the Lindblad
master equation is used. According to Markovian dynamics, the memory effects of the
environment can be neglected. Hence, the environment degrees of freedom is traced out
and reduced system dynamics is obtained. After the Hamiltonian is constructed for each
system the Lindblad master equation is solved numerically.

In this thesis, the effects of the dephasing and the magnetic eld on the localiza-
tion was studied for different type of systems. The energy difference between the sites
of these systems leads to localization and make dif cult to transition of the exciton. If
energy difference (disorder) is high enough, excitation cannot spread to other sites. When
dephasing is introduced to these systems, Anderson localization is lifted, both equilibra-
tion time and entropic time decrease. However, at the Zeno regime where dephasing is
higher than a critical value, transfer is suppressed again.

Then, the relation between the participation number and entropy is observed.
Since system is in a pure state initially, participation number equals to one and entropy
is zero. When system becomes mixed, participation number converges to its minimum
value and entropy increases and attains to its asymptotic value.

Finally, magnetic eld is introduced to these systems. In that case, the effects
of the magnetic eld and dephasing on quantum transport is investigated together. Our
results indicate that, the magnetic eld also in uences quantum transport. At low mag-
netic eld, the localization is weakly suppressed thus the diffusion gets faster. However at
strong magnetic eld, destructive interference due to magnetic eld leads to localization
and diffusion is suppressed.

Generally the effects of environment on quantum transport is expected to be neg-
ative. However in open quantum system under proper conditions the interaction between
the system and environment can increase quantum transport.
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