Olive Leaf Extracts Protect Cardiomyocytes against 4-Hydroxynonenal-Induced Toxicity In Vitro: Comparison with Oleuropein, Hydroxytyrosol, and Quercetin

Elif Burcu Bali1*, Volkan Ergin2*, Lucia Rackova3, Oğuz Bayraktar4, Nurgün Küçükboyacı5, Çimen Karasu1

The affiliations are listed at the end of the article

Abstract

Olive (Olea europaea) leaf, an important traditional herbal medicine, displays cardioprotection that may be related to the cellular redox modulating effects of its polyphenolic constituents. This study was undertaken to investigate the protective effect of the ethanolic and methanolic extracts of olive leaves compared to the effects of oleuropein, hydroxytyrosol, and quercetin as a positive standard in a carbonyl compound (4-hydroxynonenal)-induced model of oxidative damage to rat cardiomyocytes (H9c2). Cell viability was detected by the MTT assay; reactive oxygen species production was assessed by the 2′,7′-dichlorodihydrofluorescein diacetate method, and the mitochondrial membrane potential was determined using a JC-1 dye kit. Phospho-Hsp27 (Ser82), phospho-MAPKAPK-2 (Thr334), phospho-c-Jun (Ser73), cleaved-caspase-3 (cl-CASP3) (Asp175), and phospho-SAPK/JNK (Thr183/Tyr185) were measured by Western blotting. The ethanolic and methanolic extracts of olive leaves inhibited 4-hydroxynonenal-induced apoptosis, characterized by increased reactive oxygen species production, impaired viability (LD50: 25 µM), mitochondrial dysfunction, and activation of pro-apoptotic cl-CASP3. The ethanolic and methanolic extracts of olive leaves also inhibited 4-hydroxynonenal-induced phosphorylation of stress-activated transcription factors, and the effects of extracts on p-SAPK/JNK, p-Hsp27, and p-MAPKAPK-2 were found to be concentration-dependent and comparable with oleuropein, hydroxytyrosol, and quercetin. While the methanolic extract down-regulated 4-hydroxynonenal-induced p-MAPKAPK-2 and p-c-Jun more than the ethanolic extract, it exerted a less inhibitory effect than the ethanolic extract on 4-hydroxynonenal-induced p-SAPK/JNK and p-Hsp27. cl-CASP3 and p-Hsp27 were attenuated, especially by quercetin. Experiments showed a predominant reactive oxygen species inhibitory and mitochondrial protecting ability at a concentration of 1–10 µg/mL of each extract, oleuropein, hydroxytyrosol, and quercetin. The ethanolic extract of olive leaves, which contains larger amounts of oleuropein, hydroxytyrosol, and quercetin (by HPLC) than the methanolic one, has more protecting ability on cardiomyocyte viability than the methanolic extract or each phenolic compound against 4-hydroxynonenal-induced carbonyl stress and toxicity.

Abbreviations

cl-CASP3: cleaved caspase-3
DCF: 2′,7′-dichlorofluorescein
DCFH2-DA: 2′,7′-dichlorodihydrofluorescein diacetate
ΔΨm: mitochondrial membrane potential
HNE: 4-hydroxynonenal
Hsp27: heat shock protein 27
H9c2: embryonic rat heart-derived myogenic cell line
JC-1: 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolo carbocyanine iodide
MAPKAPK-2: MAP kinase-activated protein kinase 2
MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide
OLE-1: ethanolic extract of olive leaves
OLE-2: methanolic extract of olive leaves
PMSF: phenylmethanesulfonyl fluoride
ROS: reactive oxygen species
SAPK/JNK: stress-activated protein kinase/c-jun N-terminal kinases

* Both of these authors contributed equally to this study.
Introduction

The interactions of proteins with ROS may result in numerous post-translational, reversible, or irreversible modifications, leading to a change in structure and/or function of the oxidized protein. 4-hydroxynonenal (HNE) is a major active aldehyde formed by lipid peroxidation reactions, which can react readily with histidine, cysteine, or lysine residues of proteins, leading to the formation of stable Michael adducts with a hemiacetal structure [1–3]. The modifications of proteins by reactive aldehydes act as signaling molecules and play multiple physiological functions; however, their excessive production with irreversible concentrations may contribute to cytopathological results including impaired signaling, RNA and DNA damage, cell cycle arrest, and apoptosis [4–6]. HNE is involved in various disease states including atherosclerosis [5], diabetes [7, 8], and cardiac problems [9, 10]. In cultured cardiomyocytes, HNE has been shown to mediate hypoxia/reoxygenation-induced injury and cell death inhibited by antioxidant treatment [11]. Despite the significance of HNE or carbonyl stress in cell survival or the death process, the effects of HNE incubation in cardiomyocytes remain uninvestigated. The aim of this study was to determine the mechanism of carbonyl (HNE)-induced apoptotic signaling and cardiotoxicity in H9c2 cells. Olive leaves contain several groups of constituents, including polyphenols, flavonoids, flavones, iridoids, and carbohydrates [12–14]. Oleuropein, the major phenolic secoiridoid in Olea europaea L. (Oleaceae), has been characterized as a powerful antioxidant in vitro [14,15] and in vivo [16] experiments. Olive leaves or oleuropein have been shown to attenuate cardiac, hepatic, and metabolic changes in high-carbohydrate-, high-fat-fed rats [16, 17] and protect heart function against ischemia and reperfusion [18]. In recent studies, we showed that the ethanolic extracts of olive leaves, oleuropein, or hydroxytyrosol exhibited the protective and regenerative effects on redox balance and related signaling pathways in insulin releasing pancreatic β-cells exposed to H2O2 [19] or a cytokine cocktail [20]. Thus, in this study, we sought to explore if olive leaf extracts or polyphenolic compounds (oleuropein, hydroxytyrosol and quercetin) can protect H9c2 cardiomyocytes in vitro against carbonyl (HNE) stress-induced toxicity and apoptosis.

Results

The amount of total phenolic content of olive leaf extracts determined using the gallic acid calibration curve (data not shown) was found to be higher in OLE-1 (ethanolic extract) than OLE-2 (methanolic extract) (Table 1). Larger amounts of oleuropein, which is the major phenolic constituent of olive leaves [12–14, 19,20], were detected in both extracts than the amounts of other polyphenols, flavonoids, flavones, iridoids, and carbohydrates [16] and protect heart function against ischemia and reperfusion [18]. In recent studies, we showed that the ethanolic extracts of olive leaves, oleuropein, or hydroxytyrosol exhibited the protective and regenerative effects on redox balance and related signaling pathways in insulin releasing pancreatic β-cells exposed to H2O2 [19] or a cytokine cocktail [20]. Thus, in this study, we sought to explore if olive leaf extracts or polyphenolic compounds (oleuropein, hydroxytyrosol and quercetin) can protect H9c2 cardiomyocytes in vitro against carbonyl (HNE) stress-induced toxicity and apoptosis.

Table 1

<table>
<thead>
<tr>
<th>Sample (1 mg/mL)</th>
<th>Absorbance</th>
<th>SD</th>
<th>GAE (mg/mL)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLE-1</td>
<td>0.78</td>
<td>0.03</td>
<td>0.14</td>
<td>14.1</td>
</tr>
<tr>
<td>OLE-2</td>
<td>0.55</td>
<td>0.01</td>
<td>0.09</td>
<td>8.7</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Extract</th>
<th>Concentration (mg/mL)</th>
<th>%</th>
<th>Retention time (min) HPLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oleuropein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLE-1</td>
<td>2.047</td>
<td>20.47</td>
<td>21.740</td>
</tr>
<tr>
<td>OLE-2</td>
<td>0.354</td>
<td>3.54</td>
<td>21.753</td>
</tr>
<tr>
<td>Hydroxytyrosol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLE-1</td>
<td>0.040</td>
<td>0.40</td>
<td>5.598</td>
</tr>
<tr>
<td>OLE-2</td>
<td>0.023</td>
<td>0.23</td>
<td>5.573</td>
</tr>
<tr>
<td>Verbascoside</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLE-1</td>
<td>0.060</td>
<td>0.60</td>
<td>16.968</td>
</tr>
<tr>
<td>OLE-2</td>
<td>0.035</td>
<td>0.35</td>
<td>16.979</td>
</tr>
<tr>
<td>Quercetin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLE-1</td>
<td>0.039</td>
<td>0.39</td>
<td>25.051</td>
</tr>
<tr>
<td>OLE-2</td>
<td>0.003</td>
<td>0.03</td>
<td>25.737</td>
</tr>
<tr>
<td>Luteolin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLE-1</td>
<td>0.167</td>
<td>1.67</td>
<td>26.186</td>
</tr>
<tr>
<td>OLE-2</td>
<td>0.021</td>
<td>0.21</td>
<td>26.543</td>
</tr>
</tbody>
</table>

Fig. 1 shows that HNE (0–50µM) induced inhibition on the viability of H9c2 cells in a dose-dependent manner. The IC50 value of 25 µM of HNE was obtained at 6 h. We used non-toxic doses
(0.1–10 µg/mL, < IC_{50}) of each extract and olive leaf phenolic compounds to test their effects on HNE-induced cell death. MTT findings confirmed that each leaf extract (OLE-1 and OLE-2) has a protective effect on HNE-induced toxicity in H9c2 cells even at a 0.1-µg/mL concentration, which is comparable with the protective effect of oleuropein, hydroxytyrosol, or quercetin (Fig. 3). OLE-1 has a significantly more protective effect than OLE-2 on the viability of H9c2 cells (Fig. 3). The degree of the protective effect of quercetin was similar with the degree of protective effect of OLE-1. In comparison with OLE-1, oleuropein or hydroxytyrosol alone demonstrated a lesser protective effect on the viability in HNE-exposed H9c2 cells (Fig. 3).

A cell membrane permeable fluorescent dye, DCFH2-DA, that is sensitive to oxidation was used to assess the levels of intracellular oxidative stress after exposure to HNE and also following pretreatment with OLE-1, OLE-2, oleuropein, hydroxytyrosol, or quercetin for 24 h. OLE-2 and oleuropein at 0.1 and 10 µg/mL concentrations, and OLE-1 and hydroxytyrosol at 10 µg/mL concentrations completely suppressed the ROS production induced by HNE (Fig. 4). However, OLE-1, hydroxytyrosol, and quercetin at a 0.1 µg/mL concentration were found to have a relatively less suppressive effect than those observed with their 10 µg/mL concentrations against HNE-induced ROS production (Fig. 4).
periments showed a predominant ROS scavenging activity at a maximum sample dose of each extract, olive phenolic compound, or standard quercetin (10 µg/mL) (p < 0.001). Mitochondrial membrane potential was measured by fluorescence staining with JC-1. Stimulation with HNE caused a significant decrease of red fluorescence of JC-1 in H9c2 cells showing mitochondrial dysfunction (Fig. 4a and b). Treatment with all preparations significantly prevented the drop of red fluorescence (Fig. 4a and b). OLE-1 was found to be less effective than OLE-2 and each olive leaf phenolic compound at 0.1 µg/mL (Fig. 5b). Western blot analysis of H9c2 cells exposed to HNE revealed expression levels of various proteins, which were partly or markedly downregulated by olive leaf extracts or the components of the extracts represented by commercial oleuropein, hydroxytyrosol, or quercetin as the standard (Fig. 6). HNE exposure to H9c2 cells resulted in significant increases (p < 0.001) in stress-activated proteins including p-SAPK/JNK (Fig. 7a), p-MAPKAPK-2 (Fig. 7b), p-Hsp27 (Fig. 7c), p-c-Jun, (Fig. 7d), and cl-CASP-3 (Fig. 7e). The HNE-induced increase on p-SAPK/JNK was partly but significantly and concentration-dependently blocked by both extracts and the polyphenolic compounds. At a concentration of 10 µg/mL, oleuropein and hydroxytyrosol were found to be more effective than other studied materials to inhibit HNE-induced p-SAPK/JNK (Fig. 7a). In comparison with OLE-1, oleuropein or quercetin and OLE-2 or hydroxytyrosol produced an upwards inhibition on p-MAPKAPK-2 protein levels (p < 0.001) (Fig. 7b). In response to carbonyl stress, HSP27 (Ser82) expression increased several folds to create a cellular adaptation to the adverse environmental stimuli. While HSP27 expression was significantly inhibited by all studied materials, OLE-1, oleuropein, and quercetin at a concentration of 10 µg/mL were found to be more effective (p < 0.001) (Fig. 7c). Olive leaf extracts and the phenolic compounds have an inhibitory effect on c-Jun phosphorylation at their nontoxic concentrations (p < 0.05 or p < 0.01), and OLE-2 showed the most significant inhibition on HNE-induced c-Jun phosphorylation at 10 µg/mL (p < 0.001) (Fig. 7d). The upregulation of cl-CASP3 by HNE was decreased in the presence of phenolic olive leaf constituents. The degrees of attenuation after the treatment of each extract or phenolic phytochemical on HNE-induced cl-CASP3 were found to be similar (0.1 or 10 µg/mL, p < 0.05 or p < 0.01) and smaller than the inhibitory effect of quercetin (p < 0.001) (Fig. 7e).

Discussion

In this study, an HNE-induced toxicity model was used to investigate the effects of carbonyl compound-induced redox stress and the protective ability of olive leaf phenolic compounds and extracts on cardiomyocyte viability and the apoptotic process in H9c2 cells in vitro. We found that (1) a carbonyl compound, HNE, inhibits viability and accelerates apoptosis in a concentration-dependent manner and (2) OLE-1, OLE-2 and each phenolic component of olive leaves, like oleuropein, hydroxytyrosol, and quercetin, exert a significant antiapoptotic effects against HNE-induced toxicity in H9c2 cells. The protective action mechanisms of the extracts or the phenolic compounds were accompanied by a decrease of the induction of the apoptotic stress markers (p-MAPKAPK-2, p-SAPK/JNK, p-HSP27, p-c-JUN, and cl-CASP3). The findings were related to the cellular protective effects of the extracts, and oleuropein and hydroxytyrosol were comparable with the effects of positive standard [21,22]. The protective action mechanisms of the extracts and the phenolic constituents of olive leaves include the reduction of ROS production and the amelioration of the mitochondria membrane potential in H9c2 cells. These results suggest that the ethanolic extract of olive leaves and also its polyphenolic constituents have a key role in cardiomyocyte protection.
HNE, a highly reactive α,β-aldehydic product generated from polyunsaturated fatty acid peroxidation, is able to accumulate in the heart in response to chronic oxidant infestation [23]. Long-term HNE exposure leads to an increase in HNE-protein adduct formation and dysfunctional proteins, mediating molecular mechanism of carbonyl stress-induced cardiotoxicity [24]. Although carbonyl-induced redox stress is known to aggravate cardiac abnormalities [7,8], there is no report showing stress-induced signaling pathways after HNE exposure in vitro in cardiomyocyte cell lines except for one, which reported a link with increased endoplasmic reticulum stress [25].

Upon stimulation by carbonyl stress, p38MAPK is phosphorylated. It then phosphorylates MAPKAPK2 to phosphorylate and activate HSP27 [26, 27]. The phosphorylation of HSP27 is under the control of the intracellular ROS level [28]. We observed that HSP27 is phosphorylated during HNE exposure in H9c2; on the other hand, the pretreatment with olive leaf phenolic compounds led to a decrease in this phosphorylation of HSP27. This indicates that olive leaf phenolic compounds contribute to H9c2 cell survival via decreasing lethal effects of HNE-induced ROS, which eliminates the requirement for HSP27-regulated prosurvival pathways. Quercetin has been shown to restrict the adaptation-induced MAPKAPK2 and HSP70 synthesis to HNE. The blockade of HSP27 synthesis by quercetin was demonstrated previously by authors in H9c2 cells [29].

C-Jun N-terminal kinase-1 (JNK-1) is activated by oxidative stress as a consequence of HNE induction [30] and thought to promote injury during severe acute myocardial infarction [26]. Several studies reported that JNK is another protein activated by oxidative stress, which is a consequence of HNE induction [31]. The present study demonstrated, for the first time, that JNK is a downstream signaling molecule in HNE-mediated cardiotoxicity in H9c2 cells. HNE-induced p-SAPK/JNK was downregulated partly by the extracts oleuropein, hydroxytyrosol, or quercetin as concentration-dependently. The results indicated that HNE induction in c-Jun, an important transcription factor that is activated by JNK, was attenuated by olive leaf extracts, especially by treatment with OLE-2 and hydroxytyrosol. Quercetin, which has been shown to be an inhibitor of c-Jun N-terminal kinase in ischemia/reperfusion injury in isolated rat hearts [32], attenuated HNE-induced c-Jun in H9c2 cells. Quercetin is the most abundant flavonoid [21] and is believed to attenuate cardiovascular disease and inhibit cardiac hypertrophy by blocking c-Jun [33].

Another important intracellular signaling pathway leading to ROS-mediated apoptosis is involved in the activation of the caspases. Activation of p38 MAPK then leads to cleavage of procasp3, yielding active cleaved-CASP3, one of the key effectors of apoptosis [34]. It has been reported that, upon oxidant exposure, H9c2 cells exhibit increased activation of CASP3, which is considered an indicator of cell death [35]. In our study, oleuropein, hy-
droxytyrosol, and both extracts reduced CASP3 activity by modulating the mitochondrial response to HNE. It has been demonstrated that quercetin exerts protective effects against H2O2 cardiotoxicity as confirmed by measurement of caspase-3 activity and that the mechanism of its action involved in the modulation of PI3K/Akt and ERK1/2 signaling pathways in H9c2 cardiomyoblasts [36]. Overall, the effects of different olive leaf extracts on apoptotic markers were different: OLE-1 exerted an inhibitory effect more than OLE-2 on HNE-induced p-SAPK/JNK and p-Hsp27, while p-MAPKAPK-2 and p-c-Jun were more downregulated by OLE-2 than OLE-1.

The cardiomyocyte protection observed in the present study by olive leaf extracts or their phenolic components against HNE toxicity are consistent with our previous findings showing a powerful protection of the ethanolic extract from olive leaves (~20% oleuropein content) in insulin-releasing cells against H2O2-induced [19] or cytokine-induced [20] toxicity and apoptosis. Based on the present findings, we suggest a model representing the action mechanisms of olive leaf phenolic compounds on HNE-induced apoptotic cell death and toxicity (Fig. 8).

The present study established that OLE-1 has more ability than OLE2 or each phenolic compound to protect cardiomyocytes against HNE-induced stress and toxicity. The more effective protecting ability of OLE-1 on cardiomyocyte viability is likely due to the synergistic interactions of polyphenolics and other compounds of OLE-1 since OLE-1 also includes a larger amount of other phenolics (verbascosid and luteolin, as well as oleuropein, hydroxytyrosol, and quercetin) than OLE-2. In this respect, we highlight once more that the usage of a polyphenolic extract mixture can be preferred for cell protection in comparison with a mono-component antioxidant compound [24]. The leaves of the olive plant (O. europaea) have been commonly used for centuries in folk medicine. Recently, the medicinal properties of olive products have focused on its polyphenols (particularly oleuropein and hydroxytyrosol), which, according to animal and in vitro studies,
have antioxidant, hypoglycemic, antihypertensive, and antiatherosclerotic properties, and improve metabolic syndrome and cardiovascular risk factors in patients [37].

In conclusion, we provided the first evidence for cardiomyocyte protection by olive leaf phenolic extracts and the major phenolic components oleuropein and hydroxytyrosol against HNE-induced cytotoxicity. This study supports the results of animal or clinical studies demonstrating the cardioprotective effects of the olive leaf and its phenolic constituents along with elucidating their cellular action mechanisms and effects on downstream stress signaling pathways.

Materials and Methods

Chemicals

Folin-Ciocalteau reagent and gallic acid were from Merck Co. All cell culture products were obtained from Lonza. HNE was purchased from Cayman Chemical. Oleuropein (HPLC grade ≥ 96%; Applichem A6909 Lot# 12101 123) and hydroxytyrosol (HPLC grade > 98%; Applichem A5303 Lot# 11120406) were purchased from Applichem. Quercetin (HPLC grade ≥ 98%) was from Sigma-Aldrich (Q4951 Lot# 060M1196 V).

Extracts

The ethanolic and methanolic extracts of olive leaves prepared according to a modified method by the authors [12, 13] were obtained from Farmasens Co. as a gift. OLE-1 (Lot# 012–08) and OLE-2 (Lot# 005–10) were stored in light-protected glass bottles at 4°C until further analyzed.

Determination of the total phenolic content

Total phenolic content was determined using the Folin-Ciocalteau assay [14], which is based on colorimetric oxidation and reduction reaction. An aliquot (0.5 mL) of each extract was reacted with freshly prepared 1.25 mL of 20% sodium carbonate and 0.5 mL of 1 N Folien reagent in a screw-capped test tube. Required dilutions were prepared with distilled water. Test tubes were vortexed and after 40 min, absorbance readings were recorded at 725 nm by a UV-Vis spectrophotometer (Shimadzu). The amount of total phenolic compounds was expressed as milligram of gallic acid equivalent per gram of dry weight of sample.

High-performance liquid chromatography determination

The modified HPLC analysis given in the literature [13, 14] was used for the quantification of phenolic compounds of the ethanolic and methanolic extracts of olive leaves. The HPLC equipment used was a Hewlett-Packard Series HP 1100 equipped with a diode array detector, and the chromatographs were recorded at λ = 260 nm (for hydroxytyrosol and oleuropein). The stationary phase was a C18 LiChrospher 100 analytical column (250 × 4 mm i.d.) with a particle size of 5 μm (Merck) thermostated at 30°C. The HPLC chromatogram of the olive leaf extract was compared to the standard mix of identified compounds. The compounds in the olive leaf extracts were identified by comparison of their retention times with the corresponding standards.

Cell culture

The embryonic rat heart-derived myogenic cell line H9c2 was purchased from the American Tissue Type Collection (#CRL-1446). The H9c2 cells were cultured in 75-cm² TC flasks in DMEM supplemented with 10% FBS, 2 mM L-glutamine, and 1% penicil-
lin-streptomycin. The cells were cultured at 37 °C in a humidified atmosphere containing 95% air/5% CO₂.

Application of the extracts and phenolic compounds
Stock solutions of olive leaf extracts were dissolved in 10% DMSO, and the concentrations of the extracts were diluted with DMEM. The extracts at the maximum concentration contained 0.02% DMSO. Hydroxytyrosol, oleuropein, and quer cetin were dissolved in media.

Cell viability assay
The effect of each extract or phenolic compound on the viability of H9c2 cells in the presence of HNE was detected by the MTT method [38]. The cells (1 × 10⁴/well) were seeded in 96-well plates and incubated for 24 h. Later, fresh medium containing 0.1, 10, 25, and 50 µg/mL concentrations of each extract or phenolic compound was added and the cells were incubated for 24 h followed by incubation with HNE (25 µM) for 6 h. Then 10 µL of MTT stock solution (5 mg/mL) was added, and the plates were incubated at 37 °C for 4 h. Culture medium was removed and the resultant formazan crystals were dissolved in 100 µL DMSO, and the absorbance values were read on a microplate reader (PowerWave XS2; BioTek Instruments) at the wavelength of 572 nm. The cells were assayed in quadruplicate, and at least two independent experiments were carried out.

Measurement of reactive oxygen species
The accumulation of intracellular ROS was determined by measuring DCF fluorescence and evaluated with a modified method described by [39]. ROS causes oxidation of DCFH2-DA to the fluorescent product DCF in the cell. In brief, the cells (2 × 10⁴/well) were pretreated with each OLE or the phenolic compounds in doses of 0.1 and 10 µg/mL and then exposed to HNE for 15 min at 37 °C in darkness. Cell culture plates were washed and incubated with 10 µM DCFH2-DA (Molecular Probes) in medium. The DCFH2-DA-containing medium was removed; the cells were washed twice with PBS, and DCF fluorescence was quantified (Ex 485 nm/Em 535 nm) using a multimode microplate reader (PowerWave XS2; BioTek Instruments).

Determination of mitochondrial membrane potential
ΔΨₘ, the cells were pretreated with each extract or phenolic compound in 0.1 and 10 µg/mL concentrations for 24 h. After pretreatment, the cells were incubated with 25 µM HNE for 15 min and then stained with 10 µM JC-1 in medium at 37 °C for 30 min in darkness. Then cells were washed twice with PBS. The JC-1 fluorescence was measured by fluorescence microscopy or spectrophotometry. Fluorescence images were captured and processed using a Leica DM6000 microscope with a Leica DFC420 camera controlled via Leica LAS AF7000 software. Fluorescence signals were also measured by spectrophotometry in 485 nm excitation, 525 nm, and 590 nm for emission of green and red fluorescence, respectively. The ratio of red/green fluorescence of JC-1 was used as an indicator of mitochondrial function. In healthy cells with high mitochondrial ΔΨₘ, JC-1 forms multimers called J-aggregates that produce red fluorescence. On the other hand, in apoptotic or unhealthy cells with low ΔΨₘ, JC-1 remains in the monomeric form, which shows green fluorescence. The results are illustrated as the percentage change in fluorescence values in comparison with the untreated controls.

Western blotting
H9c2 cells cultured in 60-mm petri dishes (Sarstedt) were lysed in 250 µL of lysis buffer (1% Triton, 20 mM Tris-HCl [pH 7.5], 150 mM NaCl, 1 mM Na₂EDTA, 1 mM EGTA, 2.5 mM sodium pyrophosphate, 1 mM beta-glycerophosphate, 1 mM Na₃VO₄, and 1 µg/mL leupeptin) supplemented with 1 mM PMSF (Roche Diagnostics). Protein concentrations were determined by using the BCA protein assay (Pierce). Protein lysates (20 µg) were heated for 5 min at 94 °C in Laemmli sample buffer containing 5% β-mercaptoethanol and loaded on 4–15% Tris-glycine SDS-PAGE gels, then transferred electrophoretically to nitrocellulose membranes. Membranes were blocked with 5% nonfat dry milk for 1 h and incubated overnight at 4 °C with phospho-MAPKAPK-2 (Thr334), phospho-HEF27 (Ser82), phospho-SAPK/JNK (Thr183/Tyr185), phospho-c-Jun (Ser73), and cleaved Caspase-3 (Asp175) antibodies (Cell Signaling Technology). Protein bands were detected with horseradish peroxidase-conjugated anti-rabbit secondary antibodies (Cell Signaling Technology) and visualized by West-Femto ECL reagents (Pierce). Chemiluminescent signals of immunoblots were documented by using Gel Logic 2200 Pro (Carestream Health). The intensity of specific proteins was quantified by using Carestream Molecular Image Software and ImageJ Software (v. 1.4; National Institutes of Health).

Statistical analysis
Experiments were performed at least three times (more than three times for MTT and DCF experiments), and statistical analysis was performed with the unpaired Student’s t-test using XL-Plot v. 2.81. One-way ANOVA tests were performed using program Past, v. 2.16. All values are expressed as means ± SD, and p < 0.05, p < 0.01, and p < 0.001 were considered statistically significant.

Acknowledgements
This work was supported by Gazi University-BAP (01/2012–70), EU-COST-BM1203 (EU-ROS), and KOSGEB (2011–0850). We also thank Farmasens Co., Gazi University Techno Park, Ankara, Turkey, (www.farmasens.com) for their support to Bio. E. Burcu Bali as a researcher.

Conflict of Interest
The authors declare no conflict of interest.
Affiliations
1 Cellular Stress Response & Signal Transduction Research Laboratory, Department of Medical Pharmacology, Faculty of Medicine, Gazi University, and Farmans Biotech Co., Gazi TechnoPark, Ankara, Turkey
2 Department of Medical Biology & Genetics, Faculty of Medicine, Gazi University, Ankara, Turkey
3 Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovak Republic
4 Department of Chemical & Biochemical Engineering, Izmir Institute of Technology, and DUAG Co., IYTE, Izmir, Turkey
5 Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey

References
4 Grune T, Davies KF. The pro teaseal system and HNE-modified proteins. Mol Aspects Med 2003; 24: 195–204
15 Buda GS, Dzisatnik MH, Chen CH, Mohly-Rosen D. Activation of aldehyde dehydrogenase 2 (ALDH2) confers cardioprotection in protein kinase C epsilon (PKCε) knockout mice. J Mol Cell Cardiol 2010; 48: 757–764
27 Hofman PL, Cutfield WS. Administration of the Nrf2-ARE activated, placebo-controlled, crossover trial. PLoS One 2013; 8: e485
31 Janic J, Wollheim CB. Ileal cell metabolism is reflected by the MTT (tetrazolium) colorimetric assay. Diabetologia 1992; 35: 482–485
33 Salvioli S, Arzidonna A, Franceschi C, Cossarizza A, JC-1, but not DioMV(C3) or rhodamine 123, is a reliable fluorescent probe to assess delta psi changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEMS Lett 1997; 411: 77–82

Original Papers
Downloaded by: Gazi University. Copyrighted material.