Search for a light charged Higgs boson decaying to c\bar{s} in pp collisions at $\sqrt{s} = 8$ TeV

The CMS collaboration

E-mail: cms-publication-committee-chair@cern.ch

ABSTRACT: A search for a light charged Higgs boson, originating from the decay of a top quark and subsequently decaying into a charm quark and a strange antiquark, is presented. The data used in the analysis correspond to an integrated luminosity of 19.7 fb$^{-1}$ recorded in proton-proton collisions at $\sqrt{s} = 8$ TeV by the CMS experiment at the LHC. The search is performed in the process $t\bar{t} \rightarrow W^\pm bH^\mp\bar{b}$, where the W boson decays to a lepton (electron or muon) and a neutrino. The decays lead to a final state comprising an isolated lepton, at least four jets and large missing transverse energy. No significant deviation is observed in the data with respect to the standard model predictions, and model-independent upper limits are set on the branching fraction $\mathcal{B}(t \rightarrow H^+ b)$, ranging from 1.2 to 6.5% for a charged Higgs boson with mass between 90 and 160 GeV, under the assumption that $\mathcal{B}(H^+ \rightarrow c\bar{s}) = 100%$.

KEYWORDS: Supersymmetry, Hadron-Hadron scattering, Higgs physics

ArXiv ePrint: 1510.04252
1 Introduction

A Higgs boson has recently been discovered by the ATLAS [1] and CMS [2, 3] Collaborations with a mass around 125 GeV and properties consistent with those expected from the standard model (SM) within the current experimental uncertainties. However, precise measurements of the properties of the new boson are needed to identify or exclude differences with respect to the SM predictions. The mass of the Higgs boson itself is subject to quadratically divergent corrections at high energies [4]. Several extensions beyond the SM (BSM) have been proposed to address such divergences. Supersymmetry [5–7] is one such model that invokes a symmetry between fundamental fermions and bosons. The Higgs sector of the so-called minimal supersymmetric standard model (MSSM) [8, 9] consists of two Higgs doublets, resulting in five physical states: a light and a heavy CP-even h and H, a CP-odd A, and two charged Higgs bosons H±. At lowest order, the MSSM Higgs sector can be expressed in terms of two parameters, usually chosen as the mass of the CP-odd boson (mA) and the ratio of the vacuum expectation values of the two Higgs doublets (tan β). The generic two-Higgs-doublet model (2HDM), of which the MSSM is a special case, encompasses the following four scenarios.

- Type I: all quarks and leptons couple only to the second doublet.
- Type II: all up-type quarks couple to the second doublet while all down-type quarks and charged leptons couple to the first one.
- Type X: both up- and down-type quarks couple to the second doublet and all leptons to the first one.
- Type Y: the roles of the two doublets are reversed with respect to Type II.

The LEP experiments [10] have set a 95% confidence level (CL) lower limit on the charged Higgs boson mass of 80.0 GeV for the Type II scenario and of 72.5 GeV for the Type I scenario for $m_A > 12$ GeV. If the mass of the charged Higgs boson, m_{H^+}, is smaller than the mass difference between the top and the bottom quarks, the top quark can decay via $t \to H^+ b$ (charge conjugate processes are always implied). For values of $\tan \beta < 1$, the MSSM charged Higgs boson predominantly decays to a charm quark and a strange antiquark $(c\bar{s})$. In 2HDMs of Types I and Y [11], the branching fraction $B(H^+ \to c\bar{s})$ is larger than 10% for any value of $\tan \beta$, while in Types II and X it can reach 100% for $\tan \beta < 1$. In this study, we assume $B(H^+ \to c\bar{s})$ to be 100%.

The presence of the $t \to H^+ b$, $H^+ \to c\bar{s}$ decay mode alters the event yield of $t\bar{t}$ pairs with hadronic jets in the final state, compared to the SM. Upper limits on the branching fraction, $B(t \to H^+ b) < 10$–20%, have been set by the CDF [12] and D0 [13] experiments at the Tevatron for m_{H^+} between 80 and 155 GeV, assuming $B(H^+ \to c\bar{s}) = 100%$. Based on 4.7 fb$^{-1}$ of data recorded at a centre-of-mass energy of 7 TeV, the ATLAS Collaboration has set an upper limit on $B(t \to H^+ b)$ between 1 and 5% for a charged Higgs boson mass in the range 90–150 GeV [14].

In this paper, we report a model-independent search for a charged Higgs boson in the 90–160 GeV mass range using the final state $t\bar{t} \to bH^+b\bar{H}^-$, where the W boson decays to a lepton ($\ell = e$ or μ) and a neutrino, and the charged Higgs boson decays to $c\bar{s}$. The contribution of the process $t\bar{t} \to bH^+b\bar{H}^-$ is expected to be negligible in this ℓ+jets final state. Figure 1 shows the dominant Feynman diagrams for the final state both in the SM $t\bar{t}$ process as well as for the model with a charged Higgs boson. We use a data sample recorded by the CMS experiment at the CERN LHC in pp collisions at $\sqrt{s} = 8$ TeV corresponding to an integrated luminosity of 19.7 fb$^{-1}$.

2 The CMS detector, simulation and reconstruction

A detailed description of the CMS detector together with a definition of the coordinate system used and the relevant kinematic variables can be found in ref. [15]. The central feature of CMS is a superconducting solenoid of 6 m diameter providing a magnetic field of 3.8 T. A silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass-scintillator hadron calorimeter are located inside the solenoid. Forward calorimeters extend the pseudorapidity [15] coverage provided by the barrel and endcap detectors. The muon detection system is composed of drift tubes, cathode strip chambers, and resistive plate chambers, embedded in the steel flux-return yoke outside the solenoid.

The CMS first-level trigger system consists of custom hardware processors. It uses information from the calorimeters and muon detector to select the interesting events. The high-level trigger system, based on a computing farm, further reduces the event rate from around 100 kHz to less than 1 kHz, before data storage.
The analysis exploits event reconstruction based on the particle-flow (PF) algorithm \cite{16, 17}. This algorithm reconstructs all stable particles in an event by combining information from all subdetectors. The resulting list of particles is then used to reconstruct higher-level objects such as jets and missing transverse energy (E_T^{miss}). Muons are reconstructed by performing a simultaneous global track fit to hits in the silicon tracker and the muon detector \cite{18}. Electrons are identified by combining information from clusters of energy deposits in the electromagnetic calorimeter and the hits in the tracker \cite{19}. Jets are reconstructed using the anti-k_T algorithm \cite{20} with a distance parameter of 0.5.

Among the large number of pp interactions per LHC bunch crossing (“pileup”) we select the one having the maximum squared sum of the transverse momenta (p_T) of charged-particle tracks as the primary vertex. On average, there were about 20 pileup events in the 2012 data. In order to suppress jets coming from pileup interactions, a jet identification criterion \cite{21} based on a multivariate analysis method is used. We correct for the detector response to obtain a realistic jet energy scale. The E_T^{miss} \cite{22} is defined as the magnitude of the vector sum of p_T of all reconstructed particles.

The method to identify jets from b quark hadronization (called “b jets”) involves the use of secondary vertices together with track based lifetime information \cite{23, 24} to provide an efficient discrimination between b jets and jets from light quarks and gluons. We choose a discriminator value that yields a misidentification probability for light-parton jets of approximately 1% in the p_T range 80 to 120 GeV. The corresponding b tagging efficiency is \sim70% for jets with an average p_T of 80 GeV in t\bar{t} events. The probability of misidentifying a c jet as a b jet is \sim20%.

Background events from t\bar{t} decay processes (other than signal), W+jets and Z+jets are generated with MadGraph 5.1 \cite{25}, interfaced with PYTHIA 6.4 \cite{26}. The underlying event tuning Z2* \cite{27} and CTEQ6M \cite{28} parton distribution function (PDF) set are used. The number of t\bar{t} events is estimated from the SM next-to-next-to-leading-order (NNLO)
calculation [29] of the $t\bar{t}$ production cross section, which is $252.9 \pm 6.0 \text{ pb}$. The single top quark processes are generated using Powheg 1.0 [30-34]. The expected contribution of the $W+$jets background is calculated at NNLO with Fewz 3.1 [35]. The $Z+$jets and single top quark events are also normalized to NNLO cross section calculations [36, 37]. The $t\bar{t} \rightarrow bH^+\bar{b}W^- \text{ (HW)}$ signal sample is generated with Pythia and normalized using the same production cross section as SM $t\bar{t}$. The diboson backgrounds (WW, WZ, and ZZ) are generated with Pythia and their cross sections are computed with MCFM 6.2 [38].

Generated events are processed through a full detector simulation based on GEANT4 [39], followed by a detailed trigger emulation and the CMS event reconstruction. Minimum bias events are superimposed on the hard interactions to simulate pileup. Simulated events are reweighted according to the pileup distribution observed in the data.

3 Analysis

3.1 Event selection

For the muon+jets final state, events are selected at the trigger level using an isolated single muon with $p_T > 24 \text{ GeV}$ and $|\eta| < 2.1$. In the offline analysis, an event is selected if it has at least one reconstructed muon with $p_T > 25 \text{ GeV}$ and $|\eta| < 2.1$. The muon is required to be isolated from the rest of the event activity by requiring the relative isolation $I_{\text{rel}} < 0.12$, defined as

$$I_{\text{rel}} = \frac{I_{\text{ch}} + \max [(I_{\gamma} + I_{\text{nh}} - 0.5 \times I_{\text{ch}}^{\text{PU}}), 0]}{p_T}. \quad (3.1)$$

Here, I_{ch}, I_{γ}, and I_{nh} are the sum of transverse energies for charged hadrons, photons, and neutral hadrons, respectively, in a cone size of $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.4$ around the muon direction, and $I_{\text{ch}}^{\text{PU}}$ is the p_T sum of charged hadrons associated to all pileup vertices. The latter term is used to estimate the contribution of neutral particles from the pileup events. The factor 0.5 takes into account the neutral-to-charged particle ratio. The simulated events are reweighted in order to reproduce the muon trigger and selection efficiencies that are measured in data using a “tag-and-probe” technique [40].

For the electron+jets final state, events are selected with one isolated single-electron trigger with $p_T > 27 \text{ GeV}$ and $|\eta| < 2.5$; they are selected offline if the electron has $p_T > 30 \text{ GeV}$ and $|\eta| < 2.5$. Other electron identification criteria are applied based on a multivariate analysis [41]. The electron should be isolated by requiring the relative isolation $I_{\text{rel}}^\rho < 0.1$, given by

$$I_{\text{rel}}^\rho = \frac{I_{\text{ch}} + \max [(I_{\gamma} + I_{\text{nh}} - \rho A_{\text{eff}}), 0]}{p_T}. \quad (3.2)$$

where I_{ch}, I_{γ}, and I_{nh} are calculated in a cone size of $\Delta R = 0.3$ around the electron direction, ρ is the energy density in the event that is used to estimate the average pileup contribution within the electron isolation cone, and A_{eff} is a measure of the effective area subtended by the isolation cone. Any event that has an additional muon or electron with
$p_T > 10\text{ GeV}$ and $|\eta| < 2.5$ passing a loose isolation (<0.3) is rejected. The second-lepton veto rejects most of the events from $Z+jets$ and SM $t\bar{t}$ decays, where both the W bosons decay to leptons.

Events are required to have at least four jets with $p_T > 25\text{ GeV}$ and $|\eta| < 2.5$, where two jets are expected to originate from top-quark decays and the other two from $W/H^+ + b$ boson decays. Since a neutrino is present in the signal final state, the events are required to have $E_T^{\text{miss}} > 20\text{ GeV}$. The E_T^{miss} requirement suppresses the QCD multijet and $Z(\ell^+\ell^-)+jets$ backgrounds. In these events the reconstructed E_T^{miss} is expected to be small, arising mostly from the mismeasurement of energy in the calorimeters. Compared to the dominant SM $t\bar{t}$ background, the possible contribution from $t\bar{t}V$ ($V = W, Z$) events is found to be negligible (less than 1% of the total background).

In both signal and SM $t\bar{t}$ events, there are two b quarks in the final state that originate directly from the top quark decays. Thus, we require the events to have at least two b jets. This requirement strongly suppresses the $W+jets$ and QCD multijet backgrounds, where the b jets come from the misidentification of light-quark including c jets or gluon jets. The simulated events are reweighted to reproduce the efficiencies measured in data in dedicated control regions [24].

The p_T spectra of the top quark and antiquark in data are found to be softer than that predicted by the MadGraph and Pythia generators [42]. In order to account for this effect, the simulated $t\bar{t}$ events are reweighted according to the generated p_T distribution of the top quarks and antiquarks. Event-by-event scale factors are derived based on the measurement of differential top-quark pair production cross sections in the $\ell+jets$ channel by CMS at $\sqrt{s} = 8\text{ TeV}$ [43]. These factors are applied to the simulated SM $t\bar{t}$ and signal samples before any event selection is required.

3.2 Background estimation

Most of the backgrounds coming from $t\bar{t}$, $W+jets$, $Z+jets$, single top quark and diboson processes are estimated from simulated samples normalized to NNLO predictions. As the QCD background is not well modeled by simulation, its contribution is estimated from data. A control region where the lepton candidate is non-isolated, given by $0.12 < I_{\text{rel}} < 0.30$ for muons and $0.1 < I_{\text{rel}}^\ell < 0.3$ for electrons, is used to estimate the normalization of the QCD multijet background. After subtracting the expected contributions of other processes from data, the result is extrapolated to the signal region by using a scale factor determined from events with low E_T^{miss}. The shape of the QCD background distribution is evaluated from the sample of non-isolated leptons.

In figure 2 we compare the event yields for various background samples and a signal sample, generated assuming $m_{H^+} = 120\text{ GeV}$ and $B(t \rightarrow H^+b) = 10\%$, after each selection step. At each step, the number of expected background events is found to match the data within uncertainties. The dotted line in figure 2 shows the total number of expected signal and background events in the presence of H^+ in the top quark decay. The total number of events including the H^+ signal is

$$N_{\text{total}} = (1 - x)^2 N_{t\bar{t} \rightarrow bW+bW^-} + 2x(1 - x)N_{H^+} + N_{\text{other}}, \quad (3.3)$$
where \(x = B(t \to H^+b) \) and \(N_i \) is the number of expected events for the process \(i \). Based on simulations we have found that the expected contribution of the signal \(t\bar{t} \to bH^+bH^- \) component is negligible.

3.3 Reconstruction of the W/H mass

A kinematic fit is used to fully reconstruct \(t\bar{t} \) events resulting in an improved mass resolution of the hadronically decaying boson. The fit constraints the event to the hypothesis for the production of two top quarks. As described above, one of the W bosons from top quarks decays into a lepton-neutrino pair, while the other boson (a W in SM \(t\bar{t} \) and the \(H^+ \) in the case of signal) decays into a quark-antiquark pair. Since we are interested in reconstructing the \(W/H^+ \) boson mass, we relax the constraint on the light dijet mass to be consistent with the \(W \) mass. On the other hand, both the top-quark masses are constrained to 172.5 GeV. The detailed description of the algorithm and constraints on the fit are available in ref. [44].

The kinematic fit receives the four-momenta of the lepton and all jets passing the selection requirements, \(E_T^{\text{miss}} \), and their respective resolutions. The jet energy resolution (JER) in data varies between 5 to 20% over the \(p_T \) range 30 to 1000 GeV. The jet energy in the simulation is thus smeared to appropriately reproduce the resolution measured in the data [45].

Only jets that pass the \(b \) tagging requirement are considered as \(b \)-jet candidates in the \(t\bar{t} \) hypothesis, while all other jets are taken to be the light-quark candidates for hadronic boson decays. For each event, the assignment that gives the maximum fit probability is retained. The fit modifies the measured value of the jet \(p_T \) within its resolution to a value...
corresponding to the minimum χ^2. Figure 3 shows the W and H$^+$ boson mass distributions obtained from the kinematic fit after final event selections. The kinematic fit significantly improves the dijet mass resolution, which is vital in separating the H$^+$ boson from the W boson peak.

As a control plot, figure 4 shows the transverse mass (m_T) of the system formed from the lepton candidate and E_T^{miss}. The dotted line represents the total number of expected signal and background events in the presence of H$^+$ obtained using eq. (3.3) for an assumed branching fraction of $B(t \to H^+ b) = 10\%$. This line is below the total background expectation, because the reduction in the SM $t\bar{t}$ yield is not fully compensated by the HW component and we are missing the $t\bar{t} \to bH^+ bH^-$ component as we select the events with a high p_T lepton. Other distributions such as p_T and η of the lepton, jets, and b jets as well as the jet multiplicity and b-jet multiplicity were studied. The χ^2 distribution of the kinematic fit was also checked. All these distributions show a good agreement between data and expected SM background.

4 Systematic uncertainties

The following sources of systematic uncertainty are considered in this analysis.

- Jet energy scale, resolution, and E_T^{miss} scale: the uncertainty in the jet energy scale (JES) is the leading source of uncertainty in the analysis. It is evaluated as a function of jet p_T and η according to ref. [45], and is then propagated to E_T^{miss}. The
uncertainty in JES affects both the event yield and the shape of the dijet (W or H+) mass distribution. To evaluate the uncertainty in the dijet mass distribution, the momenta of the jets are scaled according to the JES uncertainty by ±1σ. The scaled jet momenta are then passed on as inputs to the kinematic fit and the corresponding dijet mass is returned by the fit. We take the difference in the dijet mass spectrum with respect to the nominal one as a shape uncertainty in the reference distribution used in the statistical analysis (described in section 5). In order to take the uncertainty due to the JER scale factor into account, two alternative dijet invariant mass distributions are obtained after smearing the jets with the JER scale factor varied by ±1σ. The difference with respect to the nominal value is assigned as a shape uncertainty.

- **b tagging uncertainty:** the uncertainty in the b tagging efficiency and misidentification probability is another leading source of uncertainty as the selection requires two b jets. The data-simulation scale factor and the corresponding uncertainty due to the b tagging efficiency as well as the misidentification probability are taken from ref. [24]. The scale factor is applied to simulated events by randomly removing or promoting the events according to the scale factor in the b tagging efficiency and misidentification probability. The uncertainty is estimated as the difference in the event yield when the scale factors are varied by their uncertainties. The data-simulation scale factor on the c → b misidentification probability is taken to be the same as that of the b tagging efficiency and the error in the scale factor is taken as twice the corresponding uncertainty for the b jets.

Figure 4. Transverse mass distribution of the lepton plus E_T^{miss} system after all selections.
• **Normalization uncertainty:** the error in the $t\bar{t}$ production cross section, which is common for both SM $t\bar{t}$ and signal events, is a leading source of uncertainty. We consider the uncertainties on the normalization of the W+jets and Z+jets processes as fully correlated since their PDF uncertainties are known to be approximately 95% correlated. The normalization uncertainties due to the single top quark and diboson processes are also considered.

• **Lepton trigger, identification, and isolation efficiency:** the uncertainty in the combined data-simulation scale factor for the muon trigger, identification, and isolation efficiencies is taken to be 3%, as estimated using a tag-and-probe method. Similarly in the electron case the uncertainty on the associated combined data-simulation scale factor is taken to be 3%.

• **Uncertainty due to top quark p_T reweighting:** as the top quark p_T reweighting is expected to change the dijet mass shape, the uncertainty corresponding to this reweighting is considered as a shape uncertainty [43].

• **$t\bar{t}$ modeling uncertainty:** the uncertainty due to the variation of the renormalization and factorization scales used in the $t\bar{t}$ simulation is estimated by simultaneously changing their common nominal value by factors of 0.5 and 2. The nominal value is set to the momentum transfer (Q) in the hard process, given by $Q^2 = m_t^2 + \sum p_T^2$ in *MadGraph*, where the sum is over all additional final state partons in the matrix element calculations. An additional shape uncertainty is used to take into account the error due to matching thresholds used for interfacing the matrix elements generated with *MadGraph* and *Pythia* parton showering. The thresholds are changed from the default value of 20 GeV to 10 and 40 GeV.

• **Top mass uncertainty:** the uncertainty due to a possible variation of the top quark mass from its nominal value of 172.5 GeV used in the simulation is studied by changing the latter by ± 1 GeV. An additional shape uncertainty is used to take this effect into account.

• **QCD normalization uncertainty:** as the QCD multijet contribution is obtained from data, we estimate the systematic uncertainty due to the error in the QCD scale factors from the non-isolated to isolated region by varying them by approximately 40% and 60% for the electron+jets and muon+jets channel, respectively. This is calculated using data as described in section 3.2.

• **Size of the simulated samples:** due to the limited size of some of the simulated samples, the bin-by-bin statistical uncertainties in the dijet mass distribution are taken into account for each of those samples.

• **Integrated luminosity uncertainty:** the uncertainty on the integrated luminosity measurement is estimated to be 2.6% [46].

All systematic uncertainties considered for the muon+jets and electron+jets channel are listed in tables 1 and 2, respectively.
Table 1. Systematic uncertainties (in percent) for the yield of signal and background processes after all selections in the muon+jets channel.

<table>
<thead>
<tr>
<th>Source</th>
<th>HW</th>
<th>t(_t) + jets</th>
<th>W+jets</th>
<th>Z+jets</th>
<th>Single t</th>
<th>Diboson</th>
<th>QCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>JES+JER+(E_{\text{miss}})</td>
<td>6.0</td>
<td>3.2</td>
<td>24.9</td>
<td>19.6</td>
<td>6.4</td>
<td>11.5</td>
<td>—</td>
</tr>
<tr>
<td>b tagging</td>
<td>5.6</td>
<td>4.3</td>
<td>—</td>
<td>—</td>
<td>5.3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Jet → b misidentification</td>
<td>—</td>
<td>—</td>
<td>5.1</td>
<td>3.1</td>
<td>—</td>
<td>3.7</td>
<td>—</td>
</tr>
<tr>
<td>Lepton selection</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>—</td>
</tr>
<tr>
<td>Normalization</td>
<td>6.0</td>
<td>6.0</td>
<td>5.0</td>
<td>4.0</td>
<td>6.0</td>
<td>10.0</td>
<td>60.0</td>
</tr>
<tr>
<td>Simulation statistics</td>
<td>2.1</td>
<td>0.4</td>
<td>4.4</td>
<td>3.5</td>
<td>2.0</td>
<td>5.8</td>
<td>17.5</td>
</tr>
<tr>
<td>Top quark (p_T) reweighting</td>
<td>3.6</td>
<td>1.3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Integrated luminosity</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 2. Systematic uncertainties (in percent) for the yield of signal and background processes after all selections in the electron+jets channel.

<table>
<thead>
<tr>
<th>Source</th>
<th>HW</th>
<th>t(_t) + jets</th>
<th>W+jets</th>
<th>Z+jets</th>
<th>Single t</th>
<th>Diboson</th>
<th>QCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>JES+JER+(E_{\text{miss}})</td>
<td>4.6</td>
<td>4.0</td>
<td>18.3</td>
<td>17.5</td>
<td>6.0</td>
<td>12.5</td>
<td>—</td>
</tr>
<tr>
<td>b tagging</td>
<td>5.6</td>
<td>4.3</td>
<td>—</td>
<td>—</td>
<td>5.9</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Jet → b misidentification</td>
<td>—</td>
<td>—</td>
<td>4.8</td>
<td>4.5</td>
<td>—</td>
<td>7.5</td>
<td>—</td>
</tr>
<tr>
<td>Lepton selection</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>—</td>
</tr>
<tr>
<td>Normalization</td>
<td>6.0</td>
<td>6.0</td>
<td>5.0</td>
<td>4.0</td>
<td>6.0</td>
<td>10.0</td>
<td>40.0</td>
</tr>
<tr>
<td>Simulation statistics</td>
<td>2.5</td>
<td>0.5</td>
<td>5.4</td>
<td>5.1</td>
<td>2.5</td>
<td>6.3</td>
<td>13.8</td>
</tr>
<tr>
<td>Top quark (p_T) reweighting</td>
<td>3.8</td>
<td>2.2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Integrated luminosity</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
<td>—</td>
</tr>
</tbody>
</table>

5 Results

The event yields after all selections are listed in table 3 along with their combined statistical and systematic uncertainties. The number of signal events from the HW process is also listed for \(B(t \rightarrow H^+ b) = 10\%\). The signal event yield is obtained using the SM \(t\overline{t}\) cross section. The total number of expected background events matches well the number of observed data events within uncertainties. The dijet mass distribution after all selections is shown in figure 5. The dotted line represents the expected distribution of signal and background events for \(B(t \rightarrow H^+ b) = 10\%\). Again, the data are in agreement with the SM background expectation. An upper limit is obtained on \(B(t \rightarrow H^+ b)\) as discussed later in this section.

Assuming that any excess or deficit of events in data, when compared with the expected background contribution, is due to the \(t \rightarrow H^+ b\), \(H^+ \rightarrow c\overline{s}\) decay, the difference \(\Delta N\) between the observed number of data events and the predicted background contribution is given as a function of \(x = B(t \rightarrow H^+ b)\) via the following relation:

\[
\Delta N = N_{t\overline{t}}^{\text{BSM}} - N_{t\overline{t}}^{\text{SM}} = 2x(1-x)N_{\text{HW}}^{\text{HW}} + [(1-x)^2 - 1]N_{t\overline{t}}^{\text{SM}}. \tag{5.1}
\]
Table 3. The number of expected signal and background events in 19.7 fb⁻¹ of data, along with their combined statistical and systematic uncertainties.

<table>
<thead>
<tr>
<th>Process</th>
<th>muon+jets channel</th>
<th>electron+jets channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>HW, $m_{H^+} = 120$ GeV, $B(t \to H^+b) = 10%$</td>
<td>4420 ± 580</td>
<td>2943 ± 371</td>
</tr>
<tr>
<td>SM $t\bar{t}$</td>
<td>41712 ± 4735</td>
<td>25884 ± 3009</td>
</tr>
<tr>
<td>W+jets</td>
<td>755 ± 199</td>
<td>500 ± 101</td>
</tr>
<tr>
<td>Z+jets</td>
<td>91 ± 19</td>
<td>83 ± 16</td>
</tr>
<tr>
<td>QCD</td>
<td>381 ± 67</td>
<td>655 ± 91</td>
</tr>
<tr>
<td>Single t</td>
<td>1096 ± 114</td>
<td>687 ± 73</td>
</tr>
<tr>
<td>Diboson</td>
<td>15 ± 3</td>
<td>12 ± 2</td>
</tr>
<tr>
<td>Total background</td>
<td>44050 ± 4741</td>
<td>27820 ± 3013</td>
</tr>
<tr>
<td>Data</td>
<td>42785</td>
<td>28447</td>
</tr>
</tbody>
</table>

Figure 5. Dijet mass distributions of the hadronically decaying boson after all selections, using background templates and constrained uncertainties obtained from the maximum likelihood fit, for the muon+jets (left) and electron+jets (right) channel. The dotted line represents the expected yield in the presence of signal.

Here, N^{HW} is estimated from simulation forcing the first top quark to decay to bH^+ and the second to bW^-, and $N^{SM}_{t\bar{t}}$ is also calculated from simulation, as given by the $t\bar{t}$ background in table 3. Eq. (5.1) does not depend on any MSSM parameters. Therefore, the obtained limit in the absence of a significant excess or deficit of events is model-independent.

Based on the CLS method [47, 48], we perform a binned maximum-likelihood fit to the dijet mass distributions shown in figure 5 in order to search for a possible signal. The background and signal uncertainties described in section 4 are modeled with log-normal probability distribution functions. These uncertainties are represented by nuisance parameters that are varied in the fit. Correlations of all possible uncertainties between signal and backgrounds as well as among the two channels are taken into account. An upper limit at
the 95% CL is set on $B(t \rightarrow H^+ b)$ using eq. (5.1). Both the expected and observed limit as a function of m_{H^+} are shown in figure 6, while table 4 provides their numerical values. The expected upper limit ranges between 1.0 and 3.6% for the mass range probed. The observed limit agrees with the expected one within two standard deviations (σ), except for the region around 150 GeV where we see some excess. To better understand this excess, in figure 7 we present an expanded view of the dijet mass distribution for the muon+jets and electron+jets channel. We find the data points to be consistent with the signal-plus-background hypothesis for a charged Higgs boson mass $m_{H^+} = 150$ GeV for a best-fit branching fraction value (1.2 ± 0.2)%. The quoted uncertainty here includes both statistical and systematic errors. The local observed significance is 2.4σ, which becomes 1.5σ after incorporating the look-elsewhere effect [49], calculated over the mass region probed in a finer binning of 1 GeV.

6 Summary

A search has been performed for a light charged Higgs boson produced in the top quark decay, subsequently decaying into a charm quark and a strange antiquark. The data sample used in the analysis corresponds to an integrated luminosity of 19.7 fb$^{-1}$ recorded by the CMS experiment at $\sqrt{s} = 8$ TeV in pp collisions. After analyzing the dijet mass distribution of the $H^+ \rightarrow c\bar{s}$ candidate events that comprise an isolated lepton, at least four hadronic jets, two of which are identified as b jets, and large missing transverse energy, we have set model-independent upper limits on the branching fraction $B(t \rightarrow H^+ b)$ assuming $B(H^+ \rightarrow c\bar{s}) = 100\%$. The 95% confidence level upper limits are in the range 1.2-6.5% for a charged Higgs boson mass between 90 and 160 GeV.
Table 4. Expected and observed limits on $B(t \rightarrow H^+b)$ (in percent) at 95% CL in the mass range of 90 to 160 GeV.

<table>
<thead>
<tr>
<th>m_{H^+} (GeV)</th>
<th>-2σ</th>
<th>-1σ median</th>
<th>$+1\sigma$</th>
<th>$+2\sigma$</th>
<th>Observed limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>1.9</td>
<td>2.6</td>
<td>3.6</td>
<td>5.3</td>
<td>6.5</td>
</tr>
<tr>
<td>100</td>
<td>0.9</td>
<td>1.2</td>
<td>1.8</td>
<td>2.3</td>
<td>1.4</td>
</tr>
<tr>
<td>120</td>
<td>0.6</td>
<td>0.8</td>
<td>1.2</td>
<td>1.8</td>
<td>2.4</td>
</tr>
<tr>
<td>140</td>
<td>0.6</td>
<td>0.7</td>
<td>1.1</td>
<td>1.4</td>
<td>2.0</td>
</tr>
<tr>
<td>150</td>
<td>0.5</td>
<td>0.7</td>
<td>1.0</td>
<td>1.4</td>
<td>2.0</td>
</tr>
<tr>
<td>155</td>
<td>0.7</td>
<td>0.9</td>
<td>1.3</td>
<td>1.9</td>
<td>2.6</td>
</tr>
<tr>
<td>160</td>
<td>0.6</td>
<td>1.0</td>
<td>1.4</td>
<td>2.2</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Figure 7. An expanded view of the dijet mass distribution of the hadronically decaying boson after all selections, using background templates and constrained uncertainties obtained from the maximum likelihood fit, for the muon+jets (left) and electron+jets (right) channel. The dotted line represents the expected yield in the presence of signal.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science, Research and Economy and the Austrian Science Fund; the Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the
Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport, and the Croatian Science Foundation; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Estonian Research Council via IUT23-4 and IUT23-6 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucléaire et de Physique des Particules / CNRS, and Commissariat à l’Énergie Atomique et aux Énergies Alternatives / CEA, France; the Bundesministerium für Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Innovation Office, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Ministry of Science, ICT and Future Planning, and National Research Foundation (NRF), Republic of Korea; the Lithuanian Academy of Sciences; the Ministry of Education, and University of Malaya (Malaysia); the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Business, Innovation and Employment, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundação para a Ciência e a Tecnologia, Portugal; JINR, Dubna; the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Education, Science and Technological Development of Serbia; the Secretaría de Estado de Investigación, Desarrollo e Innovación and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the Ministry of Science and Technology, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the National Academy of Sciences of Ukraine, and State Fund for Fundamental Researches, Ukraine; the Science and Technology Facilities Council, U.K.; the U.S. Department of Energy, and the U.S. National Science Foundation.

Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the OPUS programme of the National Science Center (Poland); the
Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); and the Welch Foundation, contract C-1845.

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

N. Kidonakis, *Differential and total cross sections for top pair and single top production*, in 20th International Workshop on Deep-Inelastic Scattering and Related Subjects, DESY-PROC-2012-02, Bonn Germany (2012), pg. 831.

A. Hocker et al., *TMVA | toolkit for multivariate data analysis*, PoS(ACAT)040 [physics/0703039] [insPIRE].

[17]{17}
The CMS collaboration

Yerevan Physics Institute, Yerevan, Armenia
V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der ÖAW, Wien, Austria

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Université de Mons, Mons, Belgium
N. Beliy, G.H. Hammad

Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
A.A. Abdelalim11,12, A. Awad, M. El Sawy13,14, A. Mahrous11, A. Radi14,15

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
B. Calpas, M. Kadastik, M. Murumaa, M. Raidal, A. Tiko, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, J. Pekkanen, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland

Lappeenranta University of Technology, Lappeenranta, Finland
J. Talvitie, T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
Georgian Technical University, Tbilisi, Georgia
T. Toriashvili

Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

Deutsches Elektronen-Synchrotron, Hamburg, Germany

University of Hamburg, Hamburg, Germany

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Indian Institute of Science Education and Research (IISER), Pune, India
S. Chauhan, S. Dube, S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
H. Bakhshiansohi, H. Behnamian, S.M. Etesami, A. Fahim, R. Goldouzian, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Pakinat Mehdabadi, F. Rezaei Hosseinabadi, B. Safarzadeh, M. Zeinali

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald

INFN Sezione di Bari, Politecnico di Bari, Bari, Italy

INFN Sezione di Bologna, Università di Bologna, Bologna, Italy

INFN Sezione di Catania, Università di Catania, Catania, Italy
G. Cappello, M. Chiorboli, S. Costa, F. Giordano, R. Potenza, A. Tricomi, C. Tuve

INFN Sezione di Firenze, Università di Firenze, Firenze, Italy
G. Barbagli, V. Ciulli, C. Civinini, R. D’Alessandro, E. Focardi, S. Gonzi, V. Gori, P. Lenzi, M. Meschini, S. Paoletti, G. Sguazzoni, A. Tropiano, L. Viliain

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera

INFN Sezione di Genova, Università di Genova, Genova, Italy
V. Calvelli, F. Ferro, M. Lo Vetere, M.R. Monge, E. Robutti, S. Tosi

INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy

23
INFN Sezione di Trieste a, Università di Trieste b, Trieste, Italy
S. Belfortea, V. Candelisea,b,2, M. Casarsaa, F. Cossuttia, G. Della Riccaa,b, B. Gobboa, C. La Licataa,b, M. Maronea,b, A. Schizzia,b, A. Zanettia

Kangwon National University, Chunchon, Korea
A. Kropivnitskaya, S.K. Nam

Kyoungpook National University, Daegu, Korea
D.H. Kim, G.N. Kim, M.S. Kim, D.J. Kong, S. Lee, Y.D. Oh, A. Sakharov, D.C. Son

Chonbuk National University, Jeonju, Korea
J.A. Brochero Cifuentes, H. Kim, T.J. Kim, M.S. Ryu

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
S. Song

Korea University, Seoul, Korea

Seoul National University, Seoul, Korea
H.D. Yoo

University of Seoul, Seoul, Korea

Sungkyunkwan University, Suwon, Korea
Y. Choi, J. Goh, D. Kim, E. Kwon, J. Lee, I. Yu

Vilnius University, Vilnius, Lithuania
A. Juodagalvis, J. Vaitkus

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
I. Pedraza, H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
A. Morelos Pineda
University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, T. Khurshid, M. Shoaib

National Centre for Nuclear Research, Swierk, Poland

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, K. Bunkowski, A. Byszuk, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misuira, M. Olszewski, M. Walczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
V. Golovtsov, Y. Ivanov, V. Kim, E. Kuznetsova, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshetyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, E. Vlasov, A. Zhokin

National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia
A. Bylinkin

P.N. Lebedev Physical Institute, Moscow, Russia

Paul Scherrer Institut, Villigen, Switzerland

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

Universität Zürich, Zurich, Switzerland

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand

B. Asavapibhop, K. Kovitanggoon, G. Singh, N. Srimanobhas, N. Suwonjandee

Cukurova University, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey

I.V. Akin, B. Bilin, S. Bilmis, B. Isildak, G. Karapinar, M. Yalvac, M. Zeyrek
Bogazici University, Istanbul, Turkey
E.A. Albayrak, E. Gülmez, M. Kaya, O. Kaya, T. Yetkin

Istanbul Technical University, Istanbul, Turkey
K. Cankocak, S. Sen, F.I. Vardarlı

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, U.S.A.
A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, A. Kasmi, H. Liu, N. Pastika

The University of Alabama, Tuscaloosa, U.S.A.
O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

Boston University, Boston, U.S.A.
A. Avetisyan, T. Bose, C. Fantasia, D. Gastler, P. Lawson, D. Rankin, C. Richardson, J. Rohl, J. St. John, L. Sulak, D. Zou
Fermi National Accelerator Laboratory, Batavia, U.S.A.

University of Florida, Gainesville, U.S.A.

Florida International University, Miami, U.S.A.
S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, U.S.A.

Florida Institute of Technology, Melbourne, U.S.A.

University of Illinois at Chicago (UIC), Chicago, U.S.A.

The University of Iowa, Iowa City, U.S.A.

Johns Hopkins University, Baltimore, U.S.A.
The University of Kansas, Lawrence, U.S.A.

Kansas State University, Manhattan, U.S.A.
A. Ivanov, K. Kaadze, S. Khalil, M. Makouski, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda

Lawrence Livermore National Laboratory, Livermore, U.S.A.
D. Lange, F. Rebassoo, D. Wright

University of Maryland, College Park, U.S.A.

Massachusetts Institute of Technology, Cambridge, U.S.A.

University of Minnesota, Minneapolis, U.S.A.

University of Mississippi, Oxford, U.S.A.
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, U.S.A.

State University of New York at Buffalo, Buffalo, U.S.A.
M. Alyari, J. Dolen, J. George, A. Godshalk, C. Harrington, I. Iashvili, J. Kaisen, A. Kharchilava, A. Kumar, S. Rappoccio

Northeastern University, Boston, U.S.A.

Northwestern University, Evanston, U.S.A.
University of Notre Dame, Notre Dame, U.S.A.

The Ohio State University, Columbus, U.S.A.

Princeton University, Princeton, U.S.A.

University of Puerto Rico, Mayaguez, U.S.A.
S. Malik

Purdue University, West Lafayette, U.S.A.

Purdue University Calumet, Hammond, U.S.A.
N. Parashar, J. Stupak

Rice University, Houston, U.S.A.

University of Rochester, Rochester, U.S.A.
B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, A. Harel, O. Hindrichs, A. Khukhunaishvili, G. Petrillo, M. Verzetti

The Rockefeller University, New York, U.S.A.
L. Demortier

Rutgers, The State University of New Jersey, Piscataway, U.S.A.

University of Tennessee, Knoxville, U.S.A.
M. Foerster, G. Riley, K. Rose, S. Spanier, A. York
Texas A&M University, College Station, U.S.A.

Texas Tech University, Lubbock, U.S.A.

Vanderbilt University, Nashville, U.S.A.

University of Virginia, Charlottesville, U.S.A.

Wayne State University, Detroit, U.S.A.
C. Clarke, R. Harr, P.E. Karchin, C. Kottatchchi Kankanamge Don, P. Lamichhane, J. Sturdy

University of Wisconsin, Madison, U.S.A.

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
3: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
4: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
5: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
6: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
7: Also at Universidade Estadual de Campinas, Campinas, Brazil
8: Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France
9: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
10: Also at Joint Institute for Nuclear Research, Dubna, Russia
11: Also at Helwan University, Cairo, Egypt
12: Now at Zewail City of Science and Technology, Zewail, Egypt
13: Also at Beni-Suef University, Bani Sweif, Egypt
14: Now at British University in Egypt, Cairo, Egypt
15: Now at Ain Shams University, Cairo, Egypt
16: Also at Université de Haute Alsace, Mulhouse, France
17: Also at Tbilisi State University, Tbilisi, Georgia
18: Also at University of Hamburg, Hamburg, Germany
19: Also at Brandenburg University of Technology, Cottbus, Germany
20: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
21: Also at Eötvös Loránd University, Budapest, Hungary
22: Also at University of Debrecen, Debrecen, Hungary
23: Also at Wigner Research Centre for Physics, Budapest, Hungary
24: Also at University of Visva-Bharati, Santiniketan, India
25: Now at King Abdulaziz University, Jeddah, Saudi Arabia
26: Also at University of Ruhr University, Bochum, Germany
27: Also at Isfahan University of Technology, Isfahan, Iran
28: Also at University of Tehran, Department of Engineering Science, Tehran, Iran
29: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
30: Also at Università degli Studi di Siena, Siena, Italy
31: Also at Purdue University, West Lafayette, U.S.A.
32: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
33: Also at National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia
34: Also at California Institute of Technology, Pasadena, U.S.A.
35: Also at University of Belgrade, Belgrade, Serbia
36: Also at Facoltà di Ingegneria, Università di Roma, Roma, Italy
37: Also at National Technical University of Athens, Athens, Greece
38: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
39: Also at University of Athens, Athens, Greece
40: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
41: Also at Gaziosmanpasa University, Tokat, Turkey
42: Also at Adiyaman University, Adiyaman, Turkey
43: Also at Mersin University, Mersin, Turkey
44: Also at Cag University, Mersin, Turkey
45: Also at Piri Reis University, Istanbul, Turkey
46: Also at Ozyegin University, Istanbul, Turkey
47: Also at Izmir Institute of Technology, Izmir, Turkey
48: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
49: Also at Marmara University, Istanbul, Turkey
50: Also at Koç University, Istanbul, Turkey
51: Also at Bilkent University, Ankara, Turkey
52: Also at Hacettepe University, Ankara, Turkey
53: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
54: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
61: Also at Instituto de Astrofísica de Canarias, La Laguna, Spain
62: Also at Utah Valley University, Orem, U.S.A.
63: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
64: Also at Argonne National Laboratory, Argonne, U.S.A.
65: Also at Erzincan University, Erzincan, Turkey
66: Also at Texas A&M University at Qatar, Doha, Qatar
67: Also at Kyungpook National University, Daegu, Korea