Biotechnology for Enhanced Nutritional Quality in Plants
Ayse Ozgur Uncu, Sami Doganlar, and Anne Frary
Izmir Institute of Technology, Department of Molecular Biology & Genetics, Urla, Izmir, Turkey

Table of Contents

I. INTRODUCTION ..322
II. TARGETS FOR IMPROVEMENT ..322
III. PROTEIN MODIFICATION ..322
IV. CARBOHYDRATE ENGINEERING ..325
V. FATTY ACID MODIFICATION ...326
VI. VITAMIN AND ANTIOXIDANT CONTENT ENGINEERING ..327
 A. Vitamin A ..327
 B. Vitamin E ..329
 C. Vitamin C ..331
 D. Folate ..331
 E. Other Antioxidants ...333
VII. MINERAL CONTENT MODIFICATION ..335
VIII. REDUCTION OF PLANT ALLERGENS ...337
IX. CONCLUSIONS ...338
ACKNOWLEDGMENT ..339
REFERENCES ..339

With almost 870 million people estimated to suffer from chronic hunger worldwide, undernourishment represents a major problem that severely affects people in developing countries. In addition to undernourishment, micronutrient deficiency alone can be a cause of serious illness and death. Large portions of the world population rely on a single, starch-rich crop as their primary energy source and these staple crops are generally not rich sources of micronutrients. As a result, physical and mental health problems related to micronutrient deficiencies are estimated to affect around two billion people worldwide. The situation is expected to get worse in parallel with the expanding world population. Improving the nutritional quality of staple crops seems to be an effective and straightforward solution to the problem. Conventional breeding has long been employed for this purpose but success has been limited to the existing diversity in the gene pool. However, biotechnology enables addition or improvement of any nutrient, even those that are
scarce or totally absent in a crop species. In addition, biotechnology introduces speed to the biofortification process compared to conventional breeding. Genetic engineering was successfully employed to improve a wide variety of nutritional traits over the last decade. In the present review, progress toward engineering various types of major and minor constituents for the improvement of plant nutritional quality is discussed.

Keywords antioxidants, carbohydrates, fatty acids, folate, genetic engineering, minerals, proteins, vitamins

I. INTRODUCTION

According to the United Nations Food and Agriculture Organization (FAO), an estimated 868 million people were undernourished in the years from 2010 to 2012 (FAO, WFP and IFAD, 2012). Undernourishment in combination with vitamin and mineral deficiencies is responsible for the deaths of more than 2.5 million children per year (FAO, WFP and IFAD, 2012). Moreover, vitamin and mineral deficiencies alone affect around two billion people worldwide, increasing the risk of death and serious illness, causing cognitive defects in children and reducing productivity in adults (FAO, WFP and IFAD, 2012). With a population that is expected to reach eight billion by 2025 (UN Population Division, 2011), these problems are only expected to get worse. One solution to this problem is to improve the nutritional quality of staple crops. Although they provide most of the calories and protein for people in developing countries, staple crops such as rice, maize, wheat and bean are not nutritionally complete foods (Hirschi, 2009). As a result, the exclusive consumption of such species can result in vitamin and/or mineral deficiency. For example, people with rice-based diets are more likely to suffer from vitamin A and iron deficiency because rice is a poor source of these nutrients (Bhullar and Grussem, 2013).

Although conventional breeding has addressed these problems in various crops, progress is slow and limited by the genetic diversity available in a given crop’s gene pool (Hirschi, 2009). Biotechnology holds promise for more dramatic improvements in plant nutritional quality, as the gene pool for genetic modification is virtually unlimited (Hirschi, 2009). Thus, it is feasible to introduce an entirely new biosynthetic pathway into a plant to achieve the bioaccumulation of a target phyttonutrient. However, to determine if a specific goal is met, the correlation between bioaccumulation and bioavailability must be addressed.

II. TARGETS FOR IMPROVEMENT

Plants provide a diverse array of chemicals important in the human diet (Hirschi et al., 2009). These phytochemicals can be divided into two groups based on their abundance in the plant (Grusak, 2002a). Major constituents are present in grams (g) per 100 g of food product and include proteins, carbohydrates and lipids (Grusak, 2002a). Minor components are found in micrograms or milligrams per 100 g of food and include vitamins, minerals and health-enhancing secondary metabolites such as antioxidants (Grusak, 2002a).

Genetic engineering of both types of constituents is possible; however, it is generally considered that alterations in quantities of major constituents are much more difficult than quantitative changes in minor constituents (Grusak, 2002a). This is because qualitative changes to major components require the diversion of a substantial amount of precursor(s) from other pathways and may present a storage problem. As a result, modification of proteins, carbohydrates and lipids has largely been confined to qualitative changes. For example, the fatty acid synthesis pathway has been engineered to produce a healthier profile of polyunsaturated fatty acids in oil crops (Singh et al., 2005). In addition, much progress has been made in accumulating long chain omega-3 fatty acids in oil-seed crops (Singh et al., 2005). Significant alterations in both quantity and quality of minor components are widely reported. In the following sections, progress toward engineering various types of major and minor constituents for the improvement of plant nutritional quality is discussed.

III. PROTEIN MODIFICATION

Humans can synthesize only ten of the twenty amino acids (van der Meer et al., 2001). Therefore, the remaining amino acids must be obtained through diet. In the human body, amino acids are used for protein synthesis and are the precursors to other important molecules including neurotransmitters, hormones and pigments (van der Meer et al., 2001). The proteins of most major crop species including many cereals and legumes are nutritionally poor because they contain low levels of essential amino acids, particularly the members of the aspartate family, lysine and methionine (Hirschi, 2009). For example, maize seeds contain four classes of proteins; prolams (which comprise 60% of total seed protein), glutelins (34%), albumins (3%) and globulins (3%) (Salamini and Soavc, 1982). Although the other proteins all contain relatively balanced profiles of amino acids, the predominant proteins, prolams (also called zeins), have almost no lysine and tryptophan (Coleman and Larkins, 1999). As a result, maize seeds contain very little lysine and tryptophan. Over the years, much effort has been devoted to breeding maize lines with improved amino acid content (Scott et al., 2004). For example, zein mutants (opaque-2 and floury-2) were identified that synthesize less zein protein (Christianson et al., 1974). As a result, the relative content of the nutritionally-balanced proteins is increased and the mutants contain higher levels of lysine and tryptophan (Coleman and Larkins, 1999). Unfortunately, the mutants also have softer endosperm, which increases mechanical damage and disease susceptibility and decreases yield. On the other hand, the results of a recent study with maize opaque-2 nearly isogenic lines suggests a genotype dependent role of opaque-2 rather than being an absolute determinant of zein synthesis and kernel lysine content.
Aspartate kinase

$\text{L-aspartate-$\beta$-semialdehyde}$

$\text{homoserine dehydrogenase}$

$\text{2,3-dihydropicolinate}$

$\text{dihydropicolinate synthase (DHDPS)}$

$\text{O-phosphohomoserine}$

α-Ketoglutarate

Saccharophine

$\text{Saccharophine dehydrogenase (SDH)}$

$\text{S-adenosyl methionine (SAM)}$

Acetyl-CoA

Lysine

$\text{Lysine ketoglutarate reductase (LKR)}$

$\text{S-adenosylmethionine (SAM)}$

$\text{α-amino adipic semialdehyde}$

FIG. 1. Schematic biosynthetic pathway for amino acids in the aspartate family and lysine catabolism. Only key enzymes are included (in italics). Feedback inhibition by threonine and lysine is indicated by dotted lines.

(Zhao et al., 2012). Thus, the use of these mutants to breed maize with improved protein content is difficult.

An alternative approach for maize protein modification was described by Huang et al. (2004). In this work, sense and antisense sequences from a 19 KDa α-zein gene were introduced into maize to silence endogenous α-zein production. The seeds of the resulting transgenic plants had reduced α-zein content and altered amino acid profiles. Specifically, lysine, tryptophan, methionine and aspartic acid levels increased while proline and leucine levels decreased. Because the lysine biosynthetic pathway is subject to feedback inhibition by both lysine and threonine (Figure 1), increased lysine production in crop plants has also been achieved by the introduction of feedback-insensitive biosynthetic enzymes (Mazur et al., 1999). For example, tuber-specific expression of such a dihydricpicolinate synthase (DHDPS) gene in potato resulted in a six-fold increase in tuber lysine content (Mazur et al., 1999). As can be seen from Figure 1, a feedback insensitive aspartate kinase gene might also be useful for upregulating lysine, methionine and tryptophan production in plants. Another approach to establish high amounts of lysine accumulation in maize endosperm is the seed-specific down regulation of lysine catabolism. Houmard et al. (2007) targeted the bi-functional maize lysine degradation enzyme, lysine-ketoglutarate reductase/saccharopine dehydrogenase (ZLKR/SDH), with the endosperm specific expression of an inverted repeat sequence of the encoding gene. Endosperm specific RNAi silencing of ZLKR/SDH was achieved and resulted in a 20-fold increase in free lysine content of homozygous F3 seeds with respect to non-transformed controls. Frizzi et al. (2008) applied both approaches, endosperm-specific introduction of a feedback insensitive DHDPS and suppression of LKR/SDH expression by transforming maize with a feedback insensitive Corynebacterium glutamicum (CordapA) DHDPS expression cassette having an inverted repeat sequence from maize LKR/SDH inserted in its intron. The combined approach of deregulating lysine synthesis and suppressing its catabolism was successful with as much as 4000 ppm free lysine accumulated in maize seeds. Reyes et al. (2009) combined endosperm-specific suppression of maize LKR/SDH with embryo-specific suppression of the gene, which resulted in a synergistic increase in maize seed free lysine content.

While cereals are poor sources of lysine, legumes are particularly poor in the essential amino acid, methionine (Hirschi, 2009). Research on the regulation of methionine biosynthesis promises to be useful for the biofortification of this essential amino acid. Because the methionine and threonine biosynthetic pathways branch from the same precursor, suppressing threonine synthesis (TS) leads to increased methionine production.
et al. (2012). However, improvement is at the expense of threonine production, limiting the usefulness of this strategy (Ufaz and Galli, 2008; Galli and Amir, 2012). Cystathionine γ-synthase (CGS) is the first and key enzyme in methionine biosynthesis (Galli and Amir, 2012). In plants, CGS was shown to have an N-terminal region of approximately 100 amino acids that does not contribute to the catalytic activity of the enzyme (Hacham et al., 2002). The N-terminal region comprises two subdomains that downregulate CGS expression in response to the accumulation of methionine and its metabolite, S-adenosylmethionine (SAM). The first subdomain, methionine over accumulation (MTO1), posttranscriptionally regulates the level of CGS mRNA in response to the accumulation of SAM, and is conserved in all plant species. A second methionine-responsive subdomain (30 amino acids) was discovered and characterized in Arabidopsis (Hacham et al., 2006). Interestingly, in addition to the full length form of CGS, Arabidopsis has an additional form of CGS (D-AtCGS) that lacks the 30 amino acid subdomain which presumably ensures that methionine levels are sufficient for the production of metabolites regardless of feedback inhibition (Hacham et al., 2006). However, it is important to note that regulation of methionine biosynthesis may not be conserved in all plant species (Ufaz and Galli, 2008).

Overexpression of the full length CGS and its truncated forms was used in several studies to investigate the regulation of methionine biosynthesis and/or to produce plants with increased levels of methionine (Avraham et al., 2005; Hacham et al., 2008; Dancs et al., 2008). Alfalfa (Medicago sativa L.) is a member of the Fabaceae family that is grown and used worldwide as livestock feed. In order to improve the nutritional quality of this important forage crop, Avraham et al. (2005) produced transgenic alfalfa plants that expressed Arabidopsis CGS (AtCGS). The Arabidopsis Rubisco small subunit promoter was used to direct transgene expression to leaves. Compared to wild type, soluble and water-soluble protein-bound methionine content increased 32-fold and 2.2-fold, respectively, in transgenic plants. Hacham et al. (2008) produced double transgenic plants that co-expressed a feedback insensitive aspartate kinase (bAK) with full length (F-AtCGS), N-terminus deleted (T-AtCGS) and 30 amino acid subdomain deleted (D-AtCGS) forms of the Arabidopsis enzyme. Methionine and threonine biosynthesis pathways branch from the common substrate O-phosphohomoserine (OPH). So, a feedback insensitive aspartate kinase was used to ensure that sufficient levels of the common substrate could accumulate. The double transgenic lines that overexpressed T-AtCGS and D-AtCGS had significantly higher levels of methionine and threonine compared to wild type plants with the latter lines being superior in terms of both improved amino acid accumulation and phenotypic characteristics. While overexpressing T-AtCGS can lead to severe developmental retardation and stunted growth (Hacham et al., 2006), transgenic lines that co-expressed bAK and methionine-feedback insensitive D-AtCGS displayed slight phenotypic abnormalities with 176-fold, 39-fold, and 3.5-fold improved methionine, threonine and lysine contents compared to wild type. Dancs et al. (2008) used the Arabidopsis D-AtCGS gene in combination with the methionine rich 15-kD β-zein gene in order to improve methionine content and its incorporation into storage protein in potato tubers. Constitutive expression of the deleted CGS and 15-kD β-zein genes improved free methionine content by only two- to six-fold, with increased methionine content of the zein-containing protein fraction. In addition to the inadequate improvement of methionine accumulation, transgenic plants had severe phenotypic abnormalities including growth retardation and reduction in tuber yield. Interestingly, transgenic tubers had reduced anthocyanin pigmentation, implying a link between methionine and anthocyanin biosynthesis that requires further investigation. Because legumes are poor sources of methionine, Hanafy et al. (2013), transformed two legume species, soybean (Glycine max) and azuki bean (Vigna angularis) with a mutated form of AtCGS that is insensitive to feedback inhibition by SAM. The mutated gene, AtCGS1 mtol-1, was expressed under the control of a seed-specific glcinin promoter. Although soluble methionine levels increased by two-fold in transgenic seeds of the two species, total methionine content did not increase. In addition, total methionine content of azuki bean seeds significantly decreased compared to wild type, suggesting differential regulation of methionine biosynthesis in the two legume species. Inhibiting methionine catabolism through suppression of the first and main catabolic enzyme, SAM synthase, resulted in dramatic improvements in methionine accumulation. However, severe phenotypic defects accompanied reduced SAM accumulation due to the depletion of several SAM-derived essential plant metabolites (Ufaz and Galli, 2008; Galli and Amir, 2012). Another promising strategy is the expression of natural or synthetic proteins rich in methionine and/or lysine (Galli and Amir, 2012). However, the successful adoption of this strategy depends on several factors such as digestibility, stability, toxicity, allergenicity and effects on seed biology (Ufaz and Galli, 2008; Galli and Amir, 2012).

Cassava (Manihot esculenta) is a starchy root-crop on which more than 250 million Africans rely as their primary energy source and is considered a “food security crop” with its beneficial agronomic properties and high energy production per unit area (Sayre et al., 2011). Having the lowest protein:energy ratio among staple crops, cassava is an attractive target for nutritional quality improvement. One major aim of the BioCassava Plus Program (Sayre et al., 2011) is the accumulation of storage proteins with known amino acid profiles in tuberous roots, thus transforming cassava to a primary calorie source that supplies a nutritionally balanced storage protein. In addition to the complexity of cassava breeding, no significant variability in protein content exists in cassava germplasm (Abhary et al., 2011). Thus, conventional crop improvement methods are not viable for this type of nutritional improvement in cassava (Abhary et al., 2011).

Cassava leaves synthesize linamarin, a toxic cyanogenic glycoside that is transported to roots (Sayre et al., 2011). Cyanide, which is derived from linamarin, is the major source of reduced
nitrogen for amino acid synthesis in cassava roots (Siritunga and Sayre, 2004). Linamarin metabolism in cassava is illustrated in Figure 2. Modification of linamarin metabolism towards creating a protein sink in roots would potentially improve total protein content in cassava root (Sayre et al., 2011). Transgenic lines expressing cassava hydroxynitrile lyase (HNL), the enzyme that catalyzes the conversion of acetone cyanohydrin to cyanide, were produced (Siritunga and Sayre, 2004; Sayre et al., 2011). Expression of HNL under the control of the patatin promoter resulted in a three-fold increase in root total protein content. In addition, an 80% decrease in total root linamarin content was observed, without any reduction in leaf linamarin levels. Sustaining leaf linamarin levels is beneficial for the plant as linamarin provides protection against herbivores. Another advantage introduced by HNL overexpression in cassava roots was the accelerated conversion of acetone cyanohydrin to volatile cyanide, leading to the reduced potential toxicity of cassava foods (Siritunga and Sayre, 2004; Sayre et al., 2011). A second approach towards the same objective was the expression of a chimeric storage protein (zeolin) in cassava roots (Abhary et al., 2011). The chimeric protein combines phaseolin from common bean (Phaseolus vulgaris) and gamma zein from maize (Zea mays) and was shown to make protein bodies in the endoplasmic reticulum. Transgenic plants expressing the chimeric storage protein driven by the patatin promoter displayed an approximately four-fold increase in total protein content (12.5% of dry weight) with a 55% reduction in root linamarin content when compared to wild type plants. Vitamin A content is also a target for improvement in the BioCassava Plus program, and will be described in the relevant section of this review (Sayre et al., 2011).

IV. CARBOHYDRATE ENGINEERING

Carbohydrates like starch are the most important source of calories in the human diet (Morell and Myers, 2005). Therefore, improvements or alterations in the carbohydrate content of food crops can have dramatic effects on human health and nutrition. One goal is the engineering of resistant starches (Morell and Myers, 2005). Resistant starch is the portion of the starch that passes from the small intestine into the large intestine (Morell and Myers, 2005). In the large intestine, bacterial fermentation of this starch produces short chain fatty acids. These fatty acids are reported to be beneficial for maintaining gut health and preventing colo-rectal cancer (Topping and Clifton, 2001). For example, inulin, a well-studied fructan, is a resistant starch that is fermented in the colon (Sevenier et al., 2002). The consumption of inulin is associated with increases in bifidobacteria, bacteria that are associated with reduced growth of pathogenic bacteria, decreased cholesterol and increased production of vitamin B. Inulin is also reported to improve blood lipid composition and mineral uptake and decrease the incidence of colon cancer. Also of interest are starches that are slowly digested in the small intestine (Morell and Myers, 2005). Such starches provide a steady flow of glucose into the blood and decrease the body’s need for insulin. Thus, these starches may be helpful for controlling certain types of diabetes.

Starch biosynthesis is a very complex process with four groups of enzymes required for normal synthesis (Morell and Myers, 2005). Because plants usually have multiple isoforms of each enzyme, starch synthesis requires a minimum of 14 genes including two ADP-glucose pyrophosphorylases, five starch synthases, three starch-branching enzymes and four starch-debranching enzymes (Morell and Myers, 2005). Despite the genetic complexity of starch biosynthesis, there are reports of successful starch modification. In one such study, Sevenier et al. (1998) engineered sugar beet to produce fructan, a polymer of fructose. Sugar beet was selected because it produces large amounts of sucrose, a precursor for fructan production. A gene for fructan synthesis, sucrose:fructosyltransferase, was isolated from Jerusalem artichoke (Helianthus tuberosus) and transferred to sugar beet. Transgenic plants converted 90% of the sucrose stored in the root to fructans.

Since amylose, the linear, infrequently branched portion of starch, resists digestion, high amylose food products tend to display higher resistant starch content (Regina et al., 2006). The correlation between amylose and resistant starch content provides a strategy for the improvement of starch composition toward a more favorable direction by modifying the amylose/amylopectin ratio. Down-regulating genes encoding starch-branching enzymes proved successful in increasing the amylose portion of starch in wheat endosperm. Regina et al. (2006) silenced starch-branching enzyme isoforms SBEII-a and SBEII-b by triggering the RNAi mechanism. Thus, hexaploid bread wheat (Triticum aestivum L.) was transformed with inverted repeat hairpin constructs of the genes encoding SBEII-a and SBEII-b. Transgenic wheat expressing the double strand RNA targeting SBEII-b did not display a significant increase in starch amylose content while RNAi silencing of SBEII-a resulted in an endosperm starch content with more than 70% amylose. Sestili et al. (2010) followed the same strategy with two cultivars of

FIG. 2. Schematic representation of linamarin metabolism in cassava.
tetraploid durum wheat (*T. turgidum* L. var. *durum*). Endosperm specific RNAi silencing of *SBEII-a* genes in durum wheat led to an increase in amylose content up to 75%.

Rice lines with high amylose content generated by mutational breeding were identified (Yano et al., 1985; Kang et al., 2003; Yang et al., 2006). However none of the mutants displayed an increase in amylose content that is comparable with transgenic high amylose wheat lines. Targeted down-regulation of rice *SBE* genes with an antisense strategy produced transgenic rice lines with an amylose content of 49.2% whereas the non-transformed variety Teqing had an endosperm amylose content of 22.7% (Wei et al., 2010). Parallel to increased amylose content, transgenic lines also displayed a significant increase in resistant starch content.

V. FATTY ACID MODIFICATION

Fatty acid chain length and degree of saturation are the two most important factors determining the functional, sensory and nutritional value of plant oils (Kinney et al., 2002; Singh et al., 2005). Edible oils contain only five major fatty acids: palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2) and α-linolenic acid (C18:3) (Singh et al., 2005). Palmitic and stearic acid are saturated, oleic acid is monounsaturated while linoleic and α-linolenic acid are polyunsaturated. In general, oils that are rich in unsaturated fatty acids are considered to be better for the cardiovascular system (Kinney et al., 2002). One way to increase the amount of unsaturated fatty acids in a plant is to alter the expression of desaturase genes. These genes are responsible for introducing double bonds at specific locations in a fatty acid (Kinney et al., 2002). Transgenic approaches to alter desaturase gene expression have resulted in nutritionally-improved oils from several crops including maize, soybean and oilseed rape (canola, *Brassica napus*) (Kinney et al., 2002).

Long chain polyunsaturated fatty acids (LC-PUFA), which are normally found only in fish and microalgae oils, are also of particular interest for their health benefits (Singh et al., 2005). LC-PUFA, such as omega-3 oil, can reduce the risk of cardiovascular disease and stroke, reduce symptoms of hypertension and depression and improve brain and retinal health (Kris-Etherton et al., 2002). Although all plants can synthesize the main C18 polyunsaturated fatty acids, linoleic (LA) and α-linolenic acid (ALA), only some can synthesize γ-linolenic acid (GLA, C18:3) and stearidonic acid (SDA, C18:4) and none can synthesize and desaturate longer chain fatty acids (Singh et al., 2005). Therefore, the synthesis of LC-PUFA, such as arachidonic acid (AA, C20:4) and eicosapentaenoic acid (EPA, C20:5), in plants requires the introduction of genes for further elongation and desaturation (Figure 3, Singh et al., 2005).

Using a combination of three genes (one elongase and two desaturases) from an alga, Euglena and a fungus, Qi et al. (2004) engineered a LC-PUFA pathway in Arabidopsis (Figure 3). The transgenic plants produced both omega-3 and omega-6

![FIG. 3. Aerobic biosynthetic pathways for omega-3 and omega-6 long chain polyunsaturated fatty acids. Reactions catalyzed by fatty acid desaturases are shown by solid arrows, reactions catalyzed by fatty acid elongases are shown by dotted line arrows. The two pathways are connected by desaturases that can convert LA to ALA and AA to EPA. LA, linoleic acid; GLA, γ-linolenic acid; AA, arachidonic acid; ALA, α-linolenic acid; SDA, stearidonic acid; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; FAD3, fatty acid desaturase 3.](image-url)
fatty acids including AA and EPA. An alternative LC-PUFA pathway was constructed in linseed (*Linum usitatissimum*) using three different genes (Abbadi et al., 2004). Seeds of transgenic plants contained 17% GLA, 11% SDA, 1% AA and 0.8% EPA. The relatively poor synthesis of the longer chain fatty acids (AA and EPA) was thought to be due to problems with transfer of pathway intermediates to the correct substrate pool for further elongation. Therefore, effective alteration may require the introduction of acyl-transferases to move fatty acid acyl groups between the elongation and desaturation pools. Another important factor for fatty acid modification is the choice of target species because different plants have different endogenous metabolic pathways that can facilitate or hinder the engineering of a new or extended pathway (Rawsthorne, 2002). EPA content of 19.6% was achieved in soybean somatic embryos by expressing the components of the conventional Δ6-pathway: a Δ6 desaturase from *Saprolegnia diclina* or *Medicago alpina*, a Δ6 elongase from *M. alpina* and a Δ5 desaturase from *M. alpina* (Kinney et al., 2004). In order to maximize the accumulation of omega-3 LC-PUFAs by converting the omega-6 PUFA metabolites into their omega-3 counterparts, two additional genes; an Arabidopsis *FAD3* and a *S. diclina* Δ17 desaturase were also expressed. High EPA accumulation with no AA intermediate was attributed to the high efficiency of the Δ17 desaturase (Kinney et al., 2004). Higher yields obtained with soybean compared to linseed might be attributed to the differences in endogenous lipid metabolism of linseed and soybean (Venegas-Caleron et al., 2010).

Because pathway modification usually involves more than one gene, a variety of seed-specific promoters are also essential to obtain high levels of fatty acid accumulation in seeds without gene silencing (Daniell and Dhingra, 2002). The effects of host plant species, promoters and transgenes on the seed specific production of EPA in *Brassica* oilseeds were tested (Cheng et al., 2010). The choice of host species had the largest effect on the production of EPA, with the zero-erucic acid Ethiopian mustard (*B. carinata*) being a superior host than Indian mustard (*B. juncea*). An average accumulation of 20.4% EPA in transgenic *B. carinata* seeds was established. Moreover, two novel desaturases: 18-carbon omega-3 desaturase (*CpDesX*) from the fungal species *Claviceps purpurea* and 20-carbon omega-3 desaturase (*Pir-w3*) from the oomycete *Pythium irregulare*, proved successful in directing the flux from omega-6 toward the omega-3 pathway and accumulating EPA in transgenic plants. In the same study, the potential of the flax seed-specific conlinin1 promoter was tested against the napin promoter from *Brassica napus*, and conlinin1 was found to be comparable to but not as effective as the napin promoter. However, the reasonable effectiveness of conlinin1 makes it a potential seed-specific promoter that should be tested with other species.

VI. VITAMIN AND ANTIOXIDANT CONTENT ENGINEERING

Vitamin deficiency is a worldwide problem that is associated with numerous health problems (FAO, WFP and IFAD, 2012). For example, vitamin A deficiency significantly increases the risk of dying from common illnesses like diarrhea, measles and malaria (UNICEF, 2009). Unfortunately, many important cereal and other crops are poor sources of essential vitamins (Hirschi, 2009). As a result, a primary goal of crop biotechnology is the improvement of the vitamin content of staple foods like rice and maize. To date, most of the transgenic manipulations of vitamin and micronutrient content have focused on vitamins A, C and E, and folate (a B vitamin).

A. Vitamin A

In addition to increasing the seriousness of certain diseases, vitamin A deficiency causes blindness (WHO, 2012). It is estimated that 250,000 to 500,000 children worldwide go blind each year due to vitamin A deficiency and half of those children die following the loss of their eye sight (WHO, 2012). Perhaps the best-known example of engineering increased vitamin levels in a crop is “Golden Rice” (Ye et al., 2000). Rice is a staple food in many parts of the world and is usually milled to remove the outer layer leaving a pure white endosperm that lacks provitamin A (Bhullar and Gruissem, 2013). Two different vectors were used to introduce the complete β-carotene biosynthetic pathway into rice (Ye et al., 2000) (Figure 4). The first vector contained two genes required for carotenoid synthesis: phytoene synthase (*psy*) from daffodil (*Narcissus pseudonarcissus*) driven by an endosperm-specific promoter and phytoene desaturase from bacteria driven by the constitutive 35S promoter. The other vector contained a lycopene β-cyclase gene from daffodil driven by an endosperm-specific promoter. Carotenoid production in the endosperm varied for each transgenic line, however, one of the transgenic plants produced 1.6 μg of carotenoids per g of endosperm. Since the development of Golden Rice, it was discovered that replacing the daffodil *psy* gene with one from maize gave much higher levels of carotenoids up to 35 μg/g (Paine et al., 2005).

In other species, modification of provitamin A content was simpler. For example, in oilseed rape, increased levels of β-carotene in the seed was achieved by overexpression of a single gene, phytoene synthase (Shewmaker et al., 1999). Transgenic plants had 50-fold more carotenoids than control plants with a β:α-carotene ratio of 2:1. When bacterial phytoene desaturase and lycopene cyclase were co-expressed with phytoene synthase, β:α-carotene ratio reached 3:1 (Ravanello et al., 2003). Suppressing epsilon cyclization of lycopene in order to direct the metabolic flux towards β-carotenoids resulted in the increased accumulation of β-carotene and downstream products of the β-branch in transgenic canola seeds (Yu et al., 2008). Seven key enzymes of bacterial origin that are involved in ketocarotenoid biosynthesis were introduced to canola plants in order to establish elevated total carotenoid accumulation and ketocarotenoid production (Fujisawa et al., 2009). Ketocarotenoids are potent antioxidants but their production is rare in higher plants due to the absence of a β-carotene ketolase. Total seed carotenoid content of transgenic lines was 19- to 30-fold higher than that of control plants with β-carotene.
being the predominant carotenoid. Lutein and phytoene levels were also elevated accompanied by the accumulation of ketocarotenoids echinenone and canthaxanthin at significant levels (Fujisawa et al., 2009).

In tomato, introduction of a bacterial phytoene desaturase gene did not cause an increase in total carotenoids but did result in a three-fold increase in β-carotene (Romer et al., 2000). Tomato cultivar Moneymaker was transformed with Arabidopsis lycopene β-cyclase (β-lcy) under the control of the tomato phytoene desaturase promoter whose activity is up-regulated during ripening (Rosati et al., 2000). Transgenic tomatoes displayed a range of phenotypes from red to orange with the most affected line having seven-fold higher β-carotene content with respect to the wild-type control. Total carotenoid content was also elevated in most of the transgenic lines. In order to accumulate β-cyclization products downstream of the lycopene pool, the cultivar Moneymaker was transformed with β-lcy and β-carotene hydroxylase (β-Chy) under the control of the phytoene desaturase promoter (Dharmapuri et al., 2002). Transgenic lines accumulated up to 24 μg/g fresh weight of β-cryptoxanthin and zeaxanthin, which were not detectable in the parental line. Wild type fruits accumulated 5 μg/g fresh weight of β-carotene while as much as 63 μg/g fresh weight was measured in the transgenic lines. Fraser et al. (2002) transformed the cultivar Ailsa Craig with a bacterial phytoene synthase under the control of the tomato polygalacturonase (PG) promoter in order to establish ripening-specific expression. Primary transformants expressing the bacterial transgene had two- to four-fold higher total carotenoids with increased phytoene, lycopene and β-carotene levels. Constitutive expression of tomato lycopene β-cyclase cDNA resulted in individual tomato fruit that could provide the Recommended Daily Allowance (RDA) of β-carotene for three adults (D’Ambrosio et al., 2004). These transgenic tomatoes (HighCaro) displayed an intense orange color due to high β-cyclase activity which resulted in the accumulation of β-carotene instead of lycopene. Plastid engineering also proved successful in accumulating high levels of β-carotene in tomato fruits (Apel and Bock, 2009). Transplastomic tomatoes expressing β-cyclase from daffodil (Narcissus pseudonarcissus) accumulated nearly 1 mg/g DW (dry weight) of β-carotene with a 50% increase in total carotenoid content.

Although a staple crop, potato is significantly poor in β-carotene (Breithaupt and Bamedi, 2002). However, metabolic engineering efforts to accumulate high levels of β-carotene in potato tubers proved successful (Ducreux et al., 2005; Diretto et al., 2006; Diretto et al., 2007a & b; Lu et al., 2006;
Two potato cultivars were selected for work to increase the carotenoid content of potato tubers: *Solanum tuberosum* L. cv. Desiree, which typically accumulates 5.6 µg/g DW carotenoids with negligible β-carotene content and *Solanum phureja* L. cv. Mayan Gold, which typically accumulates 20 µg/g DW carotenoids (Ducrèux et al., 2005). Both cultivars were transformed with the *crtB* gene (for phytoene synthase) from *Erwinia uredovora*. Tuber specific expression of the transgene under the control of the patatin promoter resulted in the accumulation of 35 µg/g DW total carotenoids and 11 µg/DW β-carotene in developing tubers of the cultivar Desiree. In addition, transgenic Mayan Gold tubers displayed a high level of carotenoid accumulation with 78 µg/g DW (Ducrèux et al., 2005). In another study with a similar objective, the gene encoding Lcy-e was targeted with a tuber-specific antisense construct in order to suppress epsilon cyclization (Ducreux et al., 2006). Results indicated a tuber-specific increase in the accumulation of β-carotene (up to 14-fold) and β-β-carotenoids (up to 2.5-fold) without a decrease in the accumulation of lutein. When the β-carotene hydroxylation step of the β-β-carotenoid branch was targeted by tuber-specific antisense silencing of the hydroxylases *CHY1* and *CHY2*, a 38-fold increase in tuber β-carotene content was achieved (Diretto et al., 2007a). A promising genetic tool for carotenoid biofortification is the novel *Orange* (*Or*) mutation isolated from cauliflower (*Brassica oleracea* var botrytis) (Zhou et al., 2008). The mutant orange phenotype is due to the accumulation of carotenoids caused by the differentiation of proplastids into chromoplasts. The mutant phenotype was also confirmed in potato tubers carrying the *Or* transgene (Lu et al., 2006; Lopez et al., 2008). Potato cultivar Desiree was transformed with three genes of bacterial origin that encode phytoene synthase (*CrtB*), phytoene desaturase (*CrtI*) and lycopene beta-cyclase (*CrtY*) from *Erwinia uredovora*, under the control of the patatin promoter (Diretto et al., 2007b). Potato tubers transformed with the bacterial mini pathway accumulated 47 µg/g DW β-carotene, which corresponds to 50% of the RDA if 250 g of fresh weight is consumed.

With conventional breeding, a few maize lines with relatively high provitamin A content were developed (Harjes et al., 2008). However, kernels of traditional yellow maize varieties do not exhibit sufficient provitamin A levels (Aluru et al., 2008). In order to enhance the provitamin A content of maize, the Hi-II white maize variety was transformed with bacterial *crtB* and *CrtI* driven by an endosperm specific super γ-zein promoter (Aluru et al., 2008). Resulting transgenic kernels displayed up to 34-fold increased total carotenoids accompanied by elevated levels of β-carotene. Naqvi et al. (2009) engineered three metabolic pathways simultaneously to achieve elevated levels of β-carotene, ascorbate and folate in transgenic maize seeds. Expression of the two transgenes, the *Zea mays* phytoene synthase (*psy1*) cDNA under the control of wheat LMW glutenin promoter and the *Pantoea ananatis* *crtI* gene under the control of the barley D-hordein promoter, gave rise to the accumulation of up to 112-fold higher total carotenoids and up to 169-fold higher β-carotene (approx. 60 µg/g DW) in maize endosperm.

Hexaploid common wheat (*Triticum aestivum* L.) is not a rich source of carotenoids, and grains typically have lutein and zeaxanthin as the main components of carotenoid content (Humpheries and Khachik, 2003). Cong et al. (2009) introduced maize phytoene synthase (maize *γI*) and bacterial *CrtI* to the elite variety EM12 under the control of the glutenin subunit 1Dx5 and CaMV 35S promoters, respectively. Besides the light yellow color observed, an increase of up to 10.8-fold was measured for endosperm carotenoid accumulation compared to the non-transgenic controls.

Cassava was also targeted for improved provitamin A accumulation (Sayre et al., 2011). When the bacterial *crtB* was expressed under the control of the storage root specific patatin promoter, a 10- to 20-fold increase in total carotenoid content was achieved. Co-expressing 1-deoxyxylulose-5-phosphate synthase (*DXS*) with *crtB* for increased geranylgeranyl dipiphosphate (GGDP) production proved more effective and yielded 15- to 30-fold higher total carotenoid content compared to wild type roots.

B. Vitamin E

Vitamin E is also an important micronutrient for human health. Increased intake of vitamin E is linked to decreased risk of cardiovascular disease and cancer (Bramley et al., 2000). Vitamin E also helps the immune system and prevents or slows down several degenerative diseases. Vitamin E actually consists of a group of eight related compounds: the α, β, γ, and δ-tocopherols and the α, β, γ and δ-tocotrienols (Rocheford et al., 2002). The vitamin E activity of each of these isomers varies. A methylated form of α-tocopherol has the highest activity while γ-tocopherol has only one tenth the activity of α-tocopherol (Van Eenennaam et al., 2003). Among tocotrienols isomers, antioxidant activity of the α isomer is considered to be the highest (Zhang et al., 2012). The protective function of the tocols is due to their roles as antioxidants. In cell membranes, tocopherols protect polyunsaturated fatty acids from oxidative damage by free radicals. Excessive free radical production can cause tissue damage, which is thought to be related to cardiovascular disease, cancer and neurological diseases (Bramley et al., 2000). As only photosynthetic organisms synthesize tocopherols, humans should receive this essential micronutrient in their diet (Naqvi et al., 2011).

Soybean oil is one of the most commonly used food oils (Van Eenennaam et al., 2003). As tocopherolmollins (tocopherols and tocotrienols) are lipid soluble compounds, soybean oil is a good target for the improvement of α-tocopherol content and vitamin E activity. In an early example of vitamin E engineering, a 2-methyl-6-phytyl benzoquinol methyltransferase from Arabidopsis was expressed in soybean seeds (Figure 5, Van Eenennaam et al., 2003). Expression of this gene decreased δ-tocopherol from 20% to 2%. The gene was also co-expressed
with \(\gamma\)-tocopherol methyltransferase. Seeds of these transgenic plants had \(>95\%\) \(\alpha\)-tocopherol as compared to 10% in untransformed seeds. This dramatic increase in \(\alpha\)-tocopherol levels was accompanied by a five-fold increase in seed vitamin E activity. Up to 15-fold increase in total tocochromanols (tocopherols and tocotrienols) in transgenic soybean was achieved through the seed-specific expression of the limiting pathway enzymes (Karunanandaa et al., 2005). In the resulting transgenic seeds, up to 94% of the total tocochromanol content was accumulated as tocotrienols. However, \(F_2\) progeny of the cross between the transgenic high tocotrienol and transgenic high \(\alpha\)-tocopherol lines displayed up to 11-fold higher seed vitamin E activity compared to wild type. In another example of vitamin E engineering in soybean, Tavva et al. (2007) overexpressed the \(\textit{Perilla frutescens}\) tocopherol methyl transferase (\(\gamma\)-TMT) gene in soybean seeds, which resulted in increased conversion of \(\gamma\)-tocopherol and \(\delta\)-tocopherol to \(\alpha\)-tocopherol and \(\beta\)-tocopherol, respectively. Transgenic \(T_2\) seeds had 10.4-fold increased \(\alpha\)-tocopherol content and 14.9-fold increased \(\beta\)-tocopherol content with 4.8-fold higher vitamin E activity. Hydroxyphenylpyruvate dioxygenase (\(HPPD\)) catalyzes the first committed step in vitamin E biosynthesis (Raclaru et al., 2006). A chimeric \(HPPD\) gene (a combination of \textit{Synechocystis} and \textit{Homo sapiens} ORFs) was overexpressed in rapeseed (\textit{Brassica napus}) simultaneously with \textit{Arabidopsis} homogentisate phytyltransferase (\(HPT\)) and tocopherol cyclase (\(TC\)) in a seed-specific manner. A 2.4-fold increase in seed oil tocopherol content was measured as a result of the co-expression of these three transgenes.

In addition to oilseed crops, there are also efforts concentrated on engineering the vitamin E content of staple crops (Naqvi et al., 2011; Farre et al., 2012; Zhang et al., 2012). In a recent study that aimed to improve the tocopherol content of maize, a South African elite maize line was transformed with two cDNAs from \textit{Arabidopsis} that encode enzymes involved in tocopherol biosynthesis (Naqvi et al., 2011). Three transgenic lines expressing \textit{Arabidopsis} \(HPPD\) and \(MPBQ\) MT (\(MPBQ\) methyltransferase that adds a methyl group to MBPQ) under the control of the corn ubiquitin-I promoter displayed higher levels of \(\gamma\)-tocopherol with respect to wild type. The transgenic line with the highest \(\gamma\)-tocopherol content accumulated up to 8.8 \(\mu\)g/g DW, an amount that is three times higher than that of wild type. However, no elevation in the levels of other isoforms, including the most beneficial isoform \(\alpha\)-tocopherol, could be achieved, indicating the requirement for \(\gamma\)-TMT activity in order to yield elevated levels of the \(\alpha\)-isomer. Transgenic rice overexpressing the \textit{Arabidopsis} \(HPPD\) under the control of the maize constitutive ubiquitin-I promoter displayed only a slight increase in tocochromanol content due to the increased production of tocotrienols (Farre et al., 2012). However, transgenic rice grains had a significantly increased \(\alpha:\gamma\) tocopherol ratio, indicating increased vitamin E activity. The shift from the \(\gamma\) to

![Diagram of tocopherol and tocotrienol biosynthetic pathways](image-url)
α isoform was attributed to a possible positive feedback of γ-TMT activity. The Arabidopsis γ-TMT gene was expressed in rice constitutively and in an endosperm specific manner (Zhang et al., 2012). In both cases, but especially in the case of constitutive expression, the shift from γ and δ isoforms towards α tocotrienol was significant. Although an increase in the α:γ ratio was observed in transgenic rice endosperm, the altered relative abundance of isoforms did not lead to an elevation in α-tocopherol content.

C. Vitamin C

Like vitamin E, vitamin C (ascorbic acid) is one of the body’s most important antioxidants (Davey et al., 2000). In addition to its ability to neutralize free radicals and reactive oxygen species that can damage DNA, membranes and tissues, vitamin C acts as an enzyme cofactor and is needed for the synthesis of collagen, carnitine and neurotransmitters. Vitamin C is also required to maintain a healthy immune system and is used to regenerate α-tocopherol (Chen et al., 2003). As a consequence of a mutation event in the enzyme catalyzing the last step of vitamin C biosynthesis (L-gulono-γ-lactone oxidase), humans cannot synthesize vitamin C, and plants constitute the major source of this essential vitamin in the diet (Lachapelle and Drouin, 2011).

Although little is known about the ascorbic acid biosynthetic pathway in plants, modification of vitamin C content in crops was achieved in several ways. In the first example, a rat L-gulono-γ-lactone oxidase gene was transformed into lettuce to obtain a seven-fold increase in vitamin C (Jain and Nessler, 2000). The rat gene was also constitutively expressed in potato in a recent study, giving rise to 40% higher ascorbate accumulation and increased abiotic stress tolerance (Hemavathi et al., 2010). Because consumption of food containing a rat gene product may be objectionable to some consumers, most efforts have focused on exploring the use of plant genes to improve vitamin C content. Overexpression of a D-galacturonic acid reductase from strawberry was used to increase vitamin C levels in Arabidopsis by two- to three-fold (Agius et al., 2003). This enzyme reduces D-galacturonic acid to L-galactonic acid in the pathway for ascorbic acid biosynthesis via uronic acids. Its overexpression in potato gave rise to a two-fold increase in tuber ascorbate content, accompanied by increased drought, salt and oxidative stress tolerance with respect to wild type plants (Hemavathi et al., 2009).

Ascorbate recycling is another target of genetic engineering towards vitamin C biofortified crops. Dehydroascorbate reductase (DHAR) catalyzes the reaction that recycles vitamin C by converting oxidized ascorbic acid back to its non-oxidized form (Chen et al., 2003). Chen et al. (2003) doubled vitamin C levels in maize kernels by the overexpression of a DHAR gene from wheat (Figure 6). Following a similar strategy, a six-fold increase (approx. 110 μg/g DW) in ascorbate content was achieved by expressing a rice DHAR cDNA in maize endosperm (Naqvi et al., 2009). Increased folate and β-carotene levels were also achieved in the same study. Qin et al. (2011) transformed potato with its native cytosolic and chloroplastic targeted DHAR cDNAs, each under the control of the CaMV 35S promoter. Overexpression of cytosol-targeted DHAR led to increased ascorbate content in both tubers and leaves while overexpressing the chloroplastic enzyme only affected leaf ascorbate content. cDNAs encoding cytosol-targeted ascorbate recycling enzymes DHAR and MDHAR (monodehydroascorbate reductase) were cloned and overexpressed in tomato (Haroldsen et al., 2011). Overexpression of the native DHAR resulted in a 1.6-fold increase in the ascorbic acid content of mature green and red ripe fruits under low light conditions while MDHAR overexpressed lines grown under the same conditions had decreased ascorbic acid content in their mature green fruits.

An RNAi strategy was recently employed in order to obtain higher levels of vitamin C by modulating the expression of enzymes related to ascorbate metabolism (Zhang et al., 2011a; 2011b). AO (ascorbate oxidase) and APX (ascorbate peroxidase) are the enzymes that oxidize ascorbic acid to MDHA (monodehydroascorbate) in plants. Zhang et al. (2011a; 2011b) used RNAi to down-regulate the expression of both enzymes in tomato. RNAi suppression of AO expression resulted in up to 155% improvement of fruit ascorbate content (Zhang et al., 2011a). Similarly, RNAi suppression of a mitochondrial APX resulted in 1.4- to 2.2-fold increases in fruit ascorbate content compared to wild type control. Successful down-regulation of the enzyme’s expression and activity was attributed to the relatively high identity in conserved regions of the tomato APX gene family that possibly gave rise to the suppression of a number of other members as well (Zhang et al., 2011b).

D. Folate

Folate, also known as vitamin B9, is a B vitamin that is essential for preventing birth defects and decreasing the risk of certain types of anemia, cardiovascular disease and cancer (Hossain et al., 2004). Humans are unable to synthesize folates, so they should receive these essential micronutrients within their daily diet (Basset et al., 2005). Green leafy vegetables and citrus fruits contain high levels of folate; however, cereal, root and tuber crops contain very low levels (Bekaert et al., 2008). Folates are tripartite molecules, and pteridine, p-aminobenzoate (PABA) and glutamate constitute the precursors for folate synthesis (Basset et al., 2005). In the first report that described genetic engineering of folates in plants, a gene for a rate-determining step of folate synthesis, GTP cyclohydrolase-1, was cloned from E. coli and introduced into Arabidopsis (Hossain et al., 2004). Transgenic plants had a 1,250-fold increase in pterins, the substrate for folate synthesis, and a two- to four-fold increase in folates. In a similar study, a codon optimized synthetic mammalian GTP cyclohydrolase I (GCHI) was expressed in ripening tomato fruits in order to enhance pteridine synthesis (de la Garza et al., 2004) (Figure 7). The rationale for the choice of transgene was the decline in pteridine synthesis during ripening, which is presumably a limiting factor for the accumulation of folates in mature tomato fruit. Average
increase in fruit folate content of the resultant transgenic plants was two-fold with up to 140-fold increased pteridine content. As only a modest increase in folate content could be established by upregulating the pteridine branch of folate biosynthesis, the PABA branch became a complementary target for upregulation in further studies. Tomatoes that supply the recommended daily allowance of folate in a 100 gr serving were produced by combining enhanced pteridine and PABA production in a single plant (de la Garza et al., 2007). In order to upregulate PABA synthesis, the tomato variety MicroTom was transformed with the aminodeoxychorismate synthase (ADCS) from Arabidopsis under the control of the ripening specific E8 promoter (de la Garza et al., 2004). Transgenic plants were used to pollinate plants carrying the GCHI transgene. Double transgenic fruits were reported to accumulate 840 μg/100 g folate, an amount that is more than the recommended dietary allowance for pregnant women (de la Garza et al., 2007).

As a staple crop, rice has also been a target for vitamin B9 improvement (Storozhenko et al., 2007; Gillies et al., 2008; Naqvi et al., 2009). Following a similar strategy as de la Garza et al. (2007), Storozhenko et al. (2007) overexpressed Arabidopsis genes for the PABA and pterin branches in rice and achieved significantly elevated levels of folate, with the resulting transgenic plants containing up to four times the adult daily requirement/100 g of polished grains. Gillies et al. (2008) expressed the bifunctional enzyme, 6-hydroxymethyl-7,8 dihydropterin pyrophosphokinase/7,8-dihydropteroate synthase (HPPK/DHPS) which acts at a central point in the folate pathway (Figure 7), in order to improve folate production in transgenic rice grains. However, expression of the wheat enzyme driven by the maize ubiquitin promoter resulted in only a modest increase (up to 75%) in folate production in grains and leaves. Naqvi et al. (2009) engineered three distinct metabolic pathways simultaneously in order to improve folate, ascorbate and vitamin A biosynthesis in maize endosperm. The folE gene, encoding GCHI in E. coli, was expressed in maize endosperm under the control of the barley D-hordein promoter. Endosperm-specific expression of the E. coli folE gave rise to a two-fold increase in folate accumulation in transgenic maize endosperm.
The genetic engineering approaches described above all involved the manipulation of folate biosynthesis. However, hydrolysis of the folate polyglutamyl tail represents an alternative target for manipulation towards folate biofortification of plants (Akhtar et al., 2010). The polyglutamyl tail consists of up to eight glutamate residues and is believed to directly affect the activity and stability of folate and the activity of the vacuolar γ-glutamyl hydrolase (GGH) removes the polyglutamyl tail. In a study that aimed to deduce the function of GGH, et al., 2010). The polyglutamyl tail consists of up to eight glutamate residues and is believed to directly affect the activity and stability of folate and the activity of the vacuolar γ-glutamyl hydrolase (GGH) removes the polyglutamyl tail. In a study that aimed to deduce the function of GGH, knockdown of the enzyme resulted in an approximately 30% increase in folate content in Arabidopsis leaves, promising potential for the manipulation of the folate polyglutamyl tail to obtain high levels of folate in food crops (Akhtar et al., 2010).

E. Other Antioxidants

As previously mentioned, antioxidants are compounds that neutralize free radicals and reactive oxygen species (Blokhina et al., 2003). As a result, these compounds help to protect DNA, lipids, proteins, membranes and tissues from damage caused by oxidative stress. Increased consumption of fruits and vegetables rich in antioxidants can decrease the risk of cancer, cardiovascular and neurodegenerative diseases and delay aging (Deshpande et al., 1996; Bazzano et al., 2002; De Pasqual-Teresa and Sanchez-Ballesta, 2008; Zhu et al., 2012). The most prevalent and important plant-derived antioxidants include vitamins C and E; carotenoids like β-carotene (provitamin A) and lycopene; and phenolic compounds (Tucker, 2003). In addition to the previously described work with provitamin A and vitamins C and E, success was achieved with genetic modification of other antioxidants in plants.

Lycopene is a strong antioxidant that gives ripe tomatoes their red color and is a product of the carotenoid synthetic pathway (Takeoka et al., 2001). In work to improve the carotenoid and lycopene content of tomato, a phytoene synthase gene from Erwinia uredovora was overexpressed in transgenic plants (Fraser et al., 2002). The transformants had a two- to four-fold increase in fruit carotenoids with 1.8- to 2.2-fold increases in lycopene and β-carotene, respectively. Overexpression of a yeast S-adenosyl methionine decarboxylase gene was also shown to increase lycopene levels in tomato (Mehta et al., 2002). This was an unexpected result as the researchers were only attempting to alter polyamine synthesis by expression of the yeast gene. This example highlights the complexity and potential interrelatedness of biosynthetic pathways that can complicate the engineering of nutritional quality. The xanthophyll class of carotenoids represents an important class of compounds with antioxidant properties (Sies et al., 1992). Xanthophyll content was engineered in tomato through the overexpression of Arabidopsis lycopene β-cyclase (β-lyc) and pepper β-carotene hydroxylase (β-Chy) genes under the control of the fruit-specific tomato phytoene desaturase promoter (Dharmapuri et al., 2002). Due to the enhancement of cyclization of the lycopene pool, up to 24 μg/g fresh weight of β-cryptoxanthin and zeaxanthin accumulated in transgenic tomatoes. When it is considered that the levels of those compounds are below the limit of detection in wild type fruits, the results represent a significant achievement in xanthophyll biofortification of tomato.

Keto-carotenoids are a class of carotenoids that have at least one keto group (Ralley et al., 2004). These pigments have high antioxidant activity (Ahn et al., 2012). Among keto-carotenoids, astaxanthin (3,3′-dihydroxy-β, β-carotene-4,4′-dione) was reported to have antioxidant activity several times higher than β-carotene and α-tocopherol (Park et al., 2010). Astaxanthin is of special interest because there is increasing evidence of the benefits of this pigment for human health (Jayaraj et al., 2008). This potent antioxidant was reported to prevent cardiovascular disease, enhance the immune system, prevent cataracts and tissue damage from UV radiation and have antibacterial and anticancer properties. The carapace of crustaceans and the flesh of salmon and trout accumulate the pigment in high amounts (Park et al., 2010). However, with the exception of Adonis aestivalis, whose blood-red petals accumulate the pigment in significant quantities (Cunningham and Gantt, 2005), most higher plants lack the ability to synthesize astaxanthin and other keto-carotenoids because they do not have β-carotene ketolase (Ralley et al., 2004). Astaxanthin production was reported for a few other plant species, none of which accumulate the bright red pigment in comparable levels with the petals of the ornamental Adonis. The pigment is used as a natural colorant, feed additive in aquaculture and poultry farming, and research investigating the effects of astaxanthin on human health suggests that this carotenoid is an essential dietary supplement (Jayaraj et al., 2008). With the aim of producing this valuable ketocarotenoid in plants, transgenic approaches including plastid transformation were carried out (Ralley et al., 2004). Although not yet applicable for most crop plant species, plastid transformation

FIG. 7. Schematic pathway for folate biosynthesis in plants. ADC, aminodeoxychorismate; PABA, para-aminobenzoic acid; HMDHP, hydroxymethylthidihydropterin; THFGlu(n), tetrahydrofolate glutamated; DHN, dihydroneopterin; DHM, dihydromonapterin; ADCS, Aminodeoxychorismate synthase; GCHI, GTP cyclohydrolase-1; HPPK, 6-hydroxymethyl-7,8 dihydropterin pyrophosphokinase; DHPS, 7,8-dihydropterate synthase.
promises many advantages over nuclear transformation such as high expression level of the transgene due to the high copy number of the plastid genome and no requirement for a transit peptide to target transgene expression to the plastid (Maliga, 2004). Hasunuma et al. (2008) applied chloroplast transformation for the production of astaxanthin in tobacco leaves. In the study, \(\beta \)-carotene ketolase (\(CrtW \)) and \(\beta \)-carotene hydroxylase (\(CrtZ \)) genes from the marine bacterium \(Brevundimonas \) sp. were used to transform tobacco chloroplasts by homologous recombination. The transplastomic approach proved successful, accumulating 5.44 mg/g DW astaxanthin and 2.1-fold higher total carotenoids than control plants.

Carrot storage roots represent an appropriate target to engineer for keto-carotenoid accumulation as they naturally accumulate high levels of \(\alpha \) and \(\beta \)-carotene (Jayaraj et al., 2008). Up to 2400 \(\mu \)g/g root dry weight of ketocarotenoids accumulated in roots as a result of engineering the ketocarotenoid biosynthetic pathway in carrot. Double CaMV 35S, Arabidopsis ubiquitin and \(Agrobacterium rhizogenes \) RolD promoters, all of which provide high expression in transgenic roots, were used to drive the expression of \(CrtW \) from \(Haematococcus pluvialis \). The enzyme was targeted to plastids with the pea Rubisco small sub-unit transit peptide. Results of this work indicated that astaxanthin, adonirubin, and canthaxanthin are the predominant ketocarotenoids in the ketocarotenoid pool. Astaxanthin content of an average transgenic carrot reached 9 mg, an amount that is higher than the daily recommended dose of 5 mg. However, transgenic roots accumulated only 34% of the \(\beta \)-carotene content of wild type carrots due to the hydroxylation of the native \(\beta \)-carotene pool (Jayaraj et al., 2008). Results of recent work to produce ketocarotenoids in carrot roots were inconsistent with the previous work in terms of altered \(\beta \)-carotene accumulation (Ahn et al., 2012). Ahn et al. (2012) used the same enzyme, \(\beta \)-carotene ketolase from \(Haematococcus pluvialis \); however; they used the sweet potato \(ibAGP1 \) promoter to drive the expression of the \(CrtW \) cDNA and the \(ibAGP1 \) transit peptide to target the enzyme into plastids. Astaxanthin accumulation was visible to the naked eye as a reddish orange color of the roots with 17.2 \(\mu \)g/g DW of the pigment measured in the highest accumulating line. In addition, a 2.4-fold increase in the level of \(\beta \)-carotene was detected in the transgenic roots. Although the same algal enzyme was used to transform the plants in both studies, the \(\beta \)-carotene pool was presumably consumed as substrate in the former study. Ahn et al. (2012) suggested that sequence dissimilarity between their algal \(\beta \)-carotene ketolase cDNA and the gene used by Jayaraj et al. (2008) may have given rise to differential substrate preference. Another explanation provided by the authors was the differences in the expression systems that were used in the two studies.

Flavonoids are a large family of polyphenolic compounds that are also powerful antioxidants (Bovy et al., 2002). There are more than 4,000 different flavonoids including chalcones, isoflavonoids, flavanones, flavonols, and anthocyanins (Figure 8). Although tomato is rich in other antioxidants like vitamin C and lycopene, it contains only small amounts of flavonoids and these are limited to the peel (Muir et al., 2001). Genes that act in flavonoid synthesis are expressed at relatively low levels in fruit flesh (Muir et al., 2001; Bovy et al., 2002; Schijlen et al., 2006). In early work to increase flavonol levels in the flesh of tomato fruit, a petunia chalcone isomerase gene was
overexpressed in tomato and resulted in a greater than 70-fold increase in quercetin, a type of flavonol (Muir et al., 2001). In a similar study, two maize transcription factors were expressed in tomato to improve flavonol content (Bovy et al., 2002). These genes, leaf color (LC) and colorless 1 (C1), induce flavonoid gene expression in maize and were expressed exclusively in tomato fruit. Fruit flesh of the transgenic plants had increased levels of the flavonol kaempferol (60-fold increase) and the flavonone naringenin. Three flavonoid biosynthetic branches were introduced to tomato by genetic engineering to produce stilbenes, deoxychalcones and flavones that are naturally not produced in tomato fruit (Schijlen et al., 2002). These promoters were produced by Butelli et al. (2008). Intense purple coloration of flesh and peel was achieved through the expression of two transcription factors from snapdragon (Antirrhinum majus) that regulate anthocyanin pigmentation. The snapdragon Delila and Roseal genes, each driven by the ripening-specific E8 promoter, accumulated high levels of anthocyanins in transgenic tomatoes and improved the hydrophilic antioxidant capacity of the fruits by three-fold. Genetically engineered canola (Brassica napus) plants with high levels of anthocyanins were also produced (Li et al., 2010). Constitutive expression of the Arabidopsis gene, production of anthocyanin pigment 1 (PAP1), resulted in purple-green color and increased antioxidant capacity in leaves due to the enhanced accumulation of anthocyanins, flavonoids and phenylpropanoids. However, when it is considered that canola is an oilseed crop species, the effect of transgene expression on the antioxidant properties in seeds should also be determined.

Improvement of potato antioxidant capacity through improving tuber anthocyanin pigmentation has also been a focus of research. Tissue-specific accumulation of red and purple pigments in the tuber skin requires a dominant allele of locus D (devel-oper), a gene that has been known since 1910 (Salaman, 1910). D maps to a region of chromosome 10 (Van Eck et al., 1994), that harbors MYB transcription factor homologs that regulate anthocyanin biosynthesis. The pigmentation of tuber flesh (PF) locus is tightly linked to locus D (De Jong, 1987), and QTLs identified on chromosomes 5, 8, and 9 (Zhang et al., 2009) also regulate tuber flesh pigmentation. A candidate gene for locus D was identified and constitutively expressed in white-skinned and light red-colored cultivars and two white-skinned diploid clones that lack the dominant allele of the D locus. Transgenic tubers had uniform skin pigmentation, accompanied by pigmentation of tuber flesh, petals, and foliage (Jung et al., 2009). However, flesh anthocyanin pigmentation was neither complete nor uniform, implying that a functional allele of D is insufficient for complete coloration of tuber flesh and that specific alleles of QTLs that influence flesh coloration are also required. Anthocyanin 3-o-glucosyltransferase is a key enzyme in anthocyanin biosynthesis with a critical role in anthocyanin stability and water solubility (Wei et al., 2012). In a recent study that aimed to enhance anthocyanin synthesis in potato tubers, this enzyme was overexpressed in the light red skinned cultivar Desiree (Wei et al., 2012). Skin of the transgenic tubers had an up to three-fold improved anthocyanin content, which was visible to the eye as a deeper color with respect to wild type controls.

VII. MINERAL CONTENT MODIFICATION

Humans require various minerals to maintain health and for proper growth (Welch, 2002). For example, iron and zinc deficiencies result in decreased immune function and can interfere with growth and development (Zimmermann and Hurrell, 2002). It is estimated that iron deficiency affects one third of the world’s population and causes 800,000 deaths worldwide each year (Masuda et al., 2012). Plants are an important source of such essential minerals (Welch, 2002). Because plants cannot synthesize these minerals, they must be acquired from the soil. As a result, engineering of plant mineral content is quite different from modification of compounds, like proteins and vitamins, that the plant itself synthesizes. Approaches that can be used include increasing mineral uptake, storage, and bioavailability (Lonnerdal, 2003). Transport of the mineral within the plant presents an additional level of complication. Although most minerals are transported by the xylem, some minerals are transported by the phloem (Grusak, 2002b). The xylem moves minerals to those tissues/organs with the greatest water loss—mostly to leaves. In contrast, the phloem preferentially transports compounds from source (photosynthetic) organs to sinks such as seeds, fruits and roots. Thus, depending on the method of transport and the
consumed part of the plant, mineral content improvement may also require modification of the plant’s normal transport system.

Research to improve the mineral composition of crop plants has mostly focused on iron content. Several reports exist in this particular area, most of which describe research that was performed on iron biofortification of the staple crop rice (Nandi et al., 2002; Goto et al., 1999; Drakakaki et al., 2000; Lucca et al., 2002; Vasconcelos et al., 2003). In some cases, introduction of novel iron-binding proteins was used to increase iron content. In early work, Nandi et al. (2002) expressed human lactoferrin, a major iron-binding protein in human breast milk, in rice endosperm. Each lactoferrin molecule binds two iron atoms. Grain from transgenic plants contained twice as much iron as untransformed grain. Although the increase in iron content was not sufficient for individuals with high iron requirements on a rice-based diet, it was thought to be promising for infants and children who require less iron (Nandi et al., 2002). In attempts to increase iron content by further increasing the plant’s iron-binding capacity, soybean and common bean ferritins were introduced into rice and wheat (Goto et al., 1999; Drakakaki et al., 2000; Lucca et al., 2002). Each molecule of ferritin can bind 4,500 iron atoms. Thus, ferritin is an excellent iron-storage protein. When the gene for soybean ferritin was introduced into rice, the resulting transgenic plants had two- to three-fold more iron than nontransformed individuals (Goto et al., 1999). Similar work with a Phaseolus vulgaris ferritin gene doubled the iron content of rice (Lucca et al., 2002). In the same work, Lucca et al. (2002) also attempted two methods to increase the bioavailability of iron in transgenic rice. Grains and legumes contain high levels of phytic acid, a compound that inhibits iron absorption by humans. In order to decrease this inhibition, the researchers introduced a thermo-tolerant phytase gene from Aspergillus into rice endosperm that was also expressing the ferritin gene from common bean. At the same time, a cysteine-containing peptide was introduced into the plants as it is known that such peptides can enhance mineral absorption. Although a 130-fold increase in phytase and a seven-fold increase in cysteine residues were obtained, most of the phytase activity was lost after cooking.

Drakakaki et al. (2005) followed a similar strategy as Lucca et al. (2002) with the aim of increasing the iron content and bioavailability of maize seeds. Like Lucca et al. (2002) the researchers also used the soybean ferritin to improve the iron content. However, they did not use a thermostable phytase, as strongly reduced phytic acid levels in cereals cause severe yield losses. Aspergillus phytase was expressed in maize seeds both individually and along with ferritin from soybean. A reduction up to 95% of the phytate content in transgenic maize seeds was found to take place during food preparation that involves the steps of mixing the flour with water and incubation prior to cooking. Experiments using an in vitro system that simulated human digestion displayed increased availability of iron due to phytase activity. Transgenic maize seeds expressing both the Aspergillus phytase and soybean ferritin had increased iron content accompanied by three times improved iron bioavailability.

Expression of soybean ferritin in transgenic rice grains was shown to give rise to higher iron and zinc levels simultaneously (Vasconcelos et al., 2003). Non-polished grains accumulated 71 μg/g iron and 55.5 μg/g zinc while polished grains also had increased iron content reaching 37 μg/g in the best performing line. Simultaneous increase in zinc content was attributed to a possible common mechanism that regulates the transport of both minerals. Uptake of divalent cations other than iron was reported to be affected by enzymes that regulate iron uptake (Grusak et al., 1990; Welch et al., 1993; Delhaize, 1996; Cohen et al., 1998; Vasconcelos et al., 2003; Qu et al., 2005). In this case, it is crucial to take into account and investigate the accumulation of undesirable metals in plants that are engineered for increased iron uptake/storage.

The relationship between increased iron accumulation and expression of an exogenous ferritin was investigated in rice (Qu et al., 2005). Towards this aim, different degrees of ferritin overexpression were observed in the study. The rice Globulin promoter, whose activity was shown to be more than ten-fold higher than the rice Glutelin promoter, was used to overexpress the soybean ferritin gene. Double transgenic rice lines, expressing soybean ferritin under the control of the rice Glutelin (Glb-1) and Globulin (Glb-1) promoters, were produced by transforming the ferritin overexpressing transgenic lines, Glub-1/SoyferH-1, of Goto et al. (1999) with the Glb-1/SoyferH-1 construct. Single transgenic plants expressing soybean ferritin under the control of the Glb-1 promoter (Glb-1/SoyferH1) were also produced in the study. In order to investigate the effect of ferritin overexpression on iron uptake, double (Glb-1/SoyferH-1 and Glb-1/SoyferH-1) and single (Glb-1/SoyferH1) transgenic lines produced in the study were compared with the Glub-1/SoyferH-1 lines of Goto et al. (1999). Single and double transgenic lines produced in the study had similar maximum iron concentrations in the endosperm as previously reported lines (Goto et al., 1999; Lucca et al., 2002; Vasconcelos et al., 2003) with no significant elevation in iron content due to stronger Glb-1 expression. Leaves of all examined ferritin-overexpressing lines had reduced iron content compared to wild type plants, indicating that iron uptake from the soil, rather than ferritin expression, is the major limiting factor for iron storage in rice endosperm. In the same study, accumulation of the major divalent cations was also investigated for the ferritin-overexpressing lines, and no harmful metal accumulation was observed. With the exceptions of magnesium and zinc concentrations, which were found to be higher in ferritin-overexpressing plants, concentrations of divalent cations did not display any significant difference from non-transformed plants.

Another approach to improve the mineral content in grains is increasing the expression of the nicotinamine synthase (NAS) gene (Lee et al., 2009). Nicotinamine synthase is a metal cation chelator and a key component of metal assimilation and homeostasis in higher plants. Rice has three NAS genes whose expression was found to be differentially regulated by iron. Activation
tagging of the rice OsNAS3 gene by using 35S enhancer elements improved grain iron content by 2.9-fold. Increased iron content was accompanied by elevated levels of zinc and copper in transgenic grain. Bioavailability tests with anemic mice showed improved iron bioavailability of OsNAS3 overexpressing grains with respect to wild type (Lee et al., 2009). Similarly, enhanced expression of OsNAS2 improved iron content and bioavailability of transgenic rice seeds (Lee et al., 2012). The NAS gene from Arabidopsis was used together with ferritin from common bean and phytase from Aspergillus fumigatus to improve the iron content of rice (Wirth et al., 2009). NAS was expressed constitutively under the control of the CaMV 35S promoter while the ferritin and phytase genes were each expressed under the control of the rice seed storage Globulin promoter. Resultant grain expressing the multiple transgenes displayed more than six-fold improved iron content. In another study that followed a multigenic approach, soybean ferritin (soyferH2), barley nicotinamime synthase (HvNAS1) and rice nicotinamime-metal transporter (OsYSL2) genes were expressed in rice (Masuda et al., 2012). Combined expression of the three transgenes resulted in elevated levels of seed iron content accompanied by improved zinc content. Field trials showed up to 4.4-fold improved iron content of polished T2 seeds. While much more common in females, osteoporosis is a condition that affects both genders (Orvell and Klein, 1995). Inadequate dietary calcium intake increases the frequency and severity of the condition which results in reduced bone mass (Connolly, 2008). In contrast with dairy products, plants are an important component of the diet for reducing the incidence of osteoporosis. Carrot was the target of pioneering work to increase calcium content in edible plants (Connolly, 2008). In contrast with dairy products, plants are an important component of the diet for reducing the incidence of osteoporosis. Carrot was the target of pioneering work to increase calcium content in edible plants. The truncated form of the Arabidopsis H+/Ca2+ transporter, cation exchanger 1 (CAX1), which lacks its auto-inhibitory domain, in carrot. Increased calcium transport to vacuoles due to transgene activity resulted in 1.6-fold improved calcium content in transgenic roots relative to control without a reduction in yield or fertility. When bioavailability of the calcium content in transgenic carrots was assayed by feeding studies with mice and humans, transgenic carrot proved a better source of calcium for both organisms (Morris et al., 2008). The truncated form of Arabidopsis CAX1 (sCAX1) and another H+/Ca2+ transporter CAX4 from Arabidopsis, were expressed in tomato (Park et al., 2005a). Although it successfully improved fruit calcium content, sCAX1 expression led to calcium deficiency-like symptoms in transgenic plants which had severely altered development and morphology. Compared to sCAX1 expressing tomatoes, CAX4 overexpressing plants displayed a modest improvement in calcium content, but no alterations in plant morphology and development were apparent. In addition to the work with carrot, attempts to improve the calcium content of potato tubers also proved successful (Park et al., 2005b; Kim et al., 2006). Transgenic tubers expressing Arabidopsis sCAX1 displayed up to three-fold more calcium content compared to wild type without significant alterations in growth and development. The trait was also found to be stably inherited when monitored over three generations (Park et al., 2005b). In other work, a chimeric, N-terminus truncated Arabidopsis cation transporter (CAX2B) that contains a domain from CAX1 for increased substrate specificity, was overexpressed in potato to improve calcium accumulation (Kim et al., 2006). The transgenic plants had 50% to 65% improved tuber calcium content relative to wild type, with stable inheritance and no deleterious effects on plant growth or development. Arabidopsis sCAX1 was also used for lettuce calcium biofortification (Park et al., 2009). Transgene overexpression did not cause any symptoms of altered growth or morphology and resulted in 25% to 32% improved calcium content in the edible parts of T2 plants compared to wild type. In addition, the level of the calcium antinutrient, calcium oxalate, was reported as undetectable in transgenic plants. Sensory characteristics of transgenic lettuce were also evaluated and no significant difference was detected between wild type and calcium biofortified plants.

VIII. REDUCTION OF PLANT ALLERGENS

Including the well-known examples of peanuts, tree nuts and soybean, proteins of several plant species elicit serious food allergies (Zuidmeer et al., 2008). Post-transcriptional silencing of genes that encode plant allergens is a promising strategy to completely prevent or at least minimize the production of such proteins in the edible parts of plant species (Singh and Bhatta, 2008). However, the resultant plant can be considered hypoallergenic only if all of the proteins that contribute to allergenicity are simultaneously removed. Relevant literature has reported plant allergens that are products of housekeeping genes, which should be replaced by non-allergenic counterparts in case of complete downregulation (Le et al., 2006a).

Early work with rice successfully reduced the amount of 14 kDa and 16 kDa seed allergen proteins through seed-specific expression of an antisense construct designed for 16 kDa proteins (Tada et al., 1996). A major allergen identified in soybean is a minor seed constituent, Gly m Bd 30K (Herman et al., 2003). This protein is reported to be the cause of more than 65% of soybean sensitivity incidents. Complete suppression of Gly m Bd 30K related peptides was achieved by constitutive expression of a Gly m Bd 30K open reading frame. Transgenic plants and seeds that lacked Gly m Bd 30K proteins displayed similar phenotypic and compositional characteristics with wild type. Most individuals with birch pollen allergy are also allergic to apples due to the cross-reactivity of immunoglobulin E with the Mal d 1 protein that is expressed in apple leaves and fruits (Gilissen et al., 2005). Although symptoms of apple allergy are mild, allergic individuals generally tend to avoid consuming this nutritious fruit. Gilissen et al. (2005) transformed in vitro grown apple plantlets with a Mal d 1 specific intron-spliced hairpin construct in order
to establish post-transcriptional silencing of Mal d 1 expression. Reduced Mal d 1 expression was confirmed by immunoblotting and leaves of wild type plantlets displayed significantly higher allergenicity compared to leaves from the transformants in skin prick tests. However, since Mal d 1 family proteins function in plant defense, mature transgenic plants must be investigated for altered response to biotic and abiotic stresses. Tomato allergens, Lyc 1 and Lyc 3 were also targeted for reduced accumulation through RNAi silencing (Le et al., 2006a: Le et al., 2006b). Profilins are small, actin-binding proteins that are found in every eukaryotic cell. Similar to many plant profilins, tomato profilins, Lyc e 1.01 and Lyc e 1.02, are identified as allergens and RNAi silencing strategy was employed to downregulate their expression (Le et al., 2006a). The approach proved successful to reduce Lyc e 1 expression 10-fold in transgenic fruits, however, since these profilins carry out housekeeping functions, downregulating their expression resulted in severe growth retardation and yield reduction. In contrast, when the expression of Lyc e 3 (a non-specific lipid transfer protein) was suppressed, no adverse effect on plant phenotype was observed although the level of Lyc 3 accumulation was below the limit of detection in transgenic fruits (Le et al., 2006b). Peanut allergy is one of the most dangerous food allergies and anaphylaxis induced by peanuts in susceptible individuals can be lethal (Zuidmeer et al., 2008). In most cases, a single kernel is sufficient to trigger the allergic reaction. Accidental consumption of peanuts is a common case, as peanuts are extensively used in many products by the food industry (Singh and Bhalla, 2008). Using an RNAi strategy, Dodo et al. (2008) successfully reduced the content of the immunodominant peanut allergen, Ara h 2, in seeds from T0 plants. Allergenicity of transgenic seeds was evaluated and found to be reduced compared to wild type. In similar work, Chu et al. (2008) suppressed the production of two immunodominant allergens, Ara h 2 and Ara h 6 simultaneously, leading to significant reduction in allergenicity.

IX. CONCLUSIONS

Although considerable progress toward biotechnological improvement of nutritional quality has been made in the last few years, more research in several key areas is needed. In order to effectively engineer a given metabolic trait, knowledge of the biosynthetic and/or transport pathway(s) involved is essential. Functional genomics and other gene discovery methods are valuable for elucidating such pathways. It is also necessary to understand the relationships among different biosynthetic pathways because modification of one pathway may have repercussions on linked pathways. Because much of the research on biosynthetic pathways is conducted on model plants, like Arabidopsis, it is essential that this knowledge be transferred to agronomically important crops.

Improved accumulation of a phytonutrient in a target plant tissue does not necessarily lead to improved uptake and health when consumed by humans. Research investigating bioavail-

ability of the compound and the effective dose for a biological effect are essential to evaluate nutritional quality. Bioavailability may be influenced by several factors such as chemical form of the nutrient, solubility in food matrix, copresentation with nutritional enhancers or antinutritional compounds and food processing conditions. A striking example is provided by research on bioavailability of lycopene in tomato (Unlu et al., 2007). While the cis-isomer was found to be preferentially absorbed by humans, all-trans-lycopene was found as the predominant isoform in processed and fresh tomatoes. High temperature processing of the tomato matrix in the presence of oil enhances cis-isomerization and leads to improved bioavailability, highlighting the necessity to consider all possible contributors to bioavailability. Studies investigating vitamin A bioavailability of Golden Rice showed that β-carotene is efficiently converted to vitamin A when consumed by humans (Tang et al., 2009). Recently, β-carotene in Golden Rice was shown to be as effective as β-carotene in oil to provide vitamin A for children (Tang et al., 2012). However, such reports on the bioavailability of phytonutrients are limited.

Bioavailability is not the only factor which must be considered, agronomic and quality traits also must be investigated in the engineered plants. The targets of nutritional improvement often have multiple roles in plant metabolism and physiology. Thus, alteration in their levels can have negative effects on plant yield and alter susceptibility or resistance to various biotic and abiotic stresses. Such undesired changes may result in a crop which is rejected by growers because of its poor field performance. Engineered plants may also have more subtle changes in metabolites which alter plant growth, product quality and non-targeted nutritional traits. Thus, the development of an engineered plant containing increased levels of a certain nutrient is only the first step toward a commercially-viable crop. The altered plant must be thoroughly vetted in the field or greenhouse (depending on the normal production conditions) to ensure that yield, quality and nutrition factors are comparable to the best cultivars and suitable for agricultural production. Fortunately, high-speed genomic and metabolomic techniques are now available to expedite some of these analyses.

Although biotechnology has proven successful in improving the nutritional value of a wide variety of crop species, only a few of such crops are approved for human consumption. These crops include soybean lines with altered oil properties (high oleic acid, high omega-3 fatty acid and decreased saturated fatty acids), maize with increased lysine content and rice with reduced allergenicity (ISAAA, 2012). Since the aim of such work is to alleviate nutrient-related health problems, regulatory approval and commercialization defines the usefulness of the biofortification strategy. The case of Golden Rice exemplifies this as it has not yet been approved for commercialization. Thus, in addition to scientific questions, societal questions involved in the biotechnological improvement of nutritional quality must be considered. Although it is not the purpose of this review to detail these considerations, they must be addressed before beginning
such research as the work itself and the regulatory approval process are very expensive and time-consuming. Therefore, target traits for improvement must be carefully selected and a clear need for the use of biotechnology (rather than classical breeding methods) must be demonstrated before work is started. The expected benefits of a given product must also be weighed against any possible safety concerns. Grower and consumer acceptance must also be obtained. Finally, because many of the traits of interest are most beneficial for those in undeveloped or developing countries, delivery of nutritionally improved crops to those who need them most must be considered.

ACKNOWLEDGMENT

The authors are grateful to Elizabeth D. Earle for critical comments on the manuscript.

REFERENCES

