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Use of Hidden Robot Concept for Calibration of an Over-Constrained Mechanism 
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Abstract: Overconstrained mechanisms prove useful in 

applications where high stiffness and low weight is 

required against high amount of forces while keeping high 

precision. This study issues a planar two 

degrees-of-freedom overconstrained parallel manipulator 

for positioning the end-effector with high acceleration 

values (>5g) with a positioning precision in the order of 30 

m. Since the manufacturing errors were compatible with 

the end-effector positioning errors, it was required to 

perform some system identification before the precision 

and repeatability tests. For the system identification, the 

end-effector position and motor input values are recorded. 

However, since the mechanism is overconstrained, the link 

lengths could not be obtained due to the lack of analytical 

inverse kinematics solution. In order to cope with this 

problem, the hidden robot concept is utilized in order to fit 

a simple kinematic model between the task space and the 

joint space of the manipulator. Further calibration studies 

are carried out using the error correction matrix. The test 

results are presented.  
Keywords: Hidden robot concept, Overconstrained mechanism, 

Calibration of manipulators  

I. Introduction
1
 

There is a continuous need of shortening the process 

completion durations in manufacturing industry. This need 

result in the search for new approaches to problems, which 

has been solved by employing the conventional methods. 

Any modification to the conventional methods can only 

result in relatively smaller effects in the betterment of the 

process completion duration. 

It has been a common practice in the manufacturing 

industry, for planar operations, to use so called x-y tables 

that have translational two degrees-of-freedom (DoF) that 

are perpendicular to each other. These operations can be 

laser or conventional cutting/welding processes. In these 

operations when the tool dimensions get larger in terms of 

inertial properties and the workspace is increased, the 

dimensions of the x-y table increase respectively in mass 

and inertia. As a result of this, the dynamic characteristics 

of the total system are affected in a negative way in terms 

of achievable maximum accelerations. Lower acceleration 

degrades the mechanism’s performance in a more 

observable fashion when the workpiece has smaller and 

shaper curved contours to be tracked. 

Employment of more powerful actuation systems can be 

seen as valid modification to the conventional systems. 

However, this would result in higher magnitude residual 

vibrations which would call for more rigid structures for 
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the machine and will result in an increase of the inertial 

properties. 

In this work, the problem is redefined as a kinematically 

redundant system problem by integrating a micro system to 

the macro system which was previously called as the x-y 

table. The concept of micro-macro mechanisms is not new. 

There have been numerous studies in order to incorporate 

the advantages of both systems in terms of workspace, 

precision and dynamics [1, 2]. 

In manufacturing systems, unless the tool is changed, 

there is a limitation for the maximum process speed. What 

really limits the performance of the machine in terms of 

process completion duration is the time spent to reach the 

maximum speed and come to a full stop. The redundancy 

concept developed in this work aims at maximizing the 

acceleration performance of the overall system. Therefore, 

by incorporating a micro system with smaller inertial 

properties and higher acceleration performance, the 

acceleration performance of the overall system is increased. 

In this setting, macro system is responsible for moving the 

micro system over the whole workspace. Similar studies 

on this concept have been carried out and commercial 

systems have been produced [3, 4, 5]. 

Our objective in this work was to design and construct a 

planar manufacturing system that has 1.5 m  3.0 m 

workspace, positioning precision of ±30 m/m, 

repeatability of ±15 m/m and highest acceleration of 5 g. 

The macro mechanism is selected as a conventional x-y 

table with a cantilever bridge that carries the micro 

mechanism. The micro mechanism, after much iteration 

that is explained in [6], is selected as a modified 5-bar 

mechanism. The mechanism is modified in order to carry a 

standard tool, use standard servomotors conveniently and 

maintain the symmetry for improved control quality. As a 

result, the micro mechanism is designed as an 

overconstrained 6-bar mechanism. The details of the 

mechanism are explained in the next section. 

In the control scheme of the overall system, the global 

trajectory designed for the tip point of the tool is divided in 

to the two systems. Among the numerous algorithms we 

devised, one of them was presented in [7]. However, 

independent of which algorithm is used, the trajectory of 

the micro mechanism is designed in its task space. In order 

to control the micro mechanism, this task space trajectory 

has to be translated into its joint space through inverse 

kinematics. Having an overconstrained mechanism makes 

the analytical solution for inverse kinematics impossible. 

The obvious choice in such a scenario is to use 

numerical methods for the calculations of inverse 

kinematics. However, due to the higher dynamics of the 

applications, the sampling frequency is fairly large for 

mechanical systems at 2 kHz, which limits the calculations 

load for real-time operation. In order to devise a solution 



for this problem, a simplified version of the micro 

mechanism representing its motion and having an 

analytical inverse kinematics solution is considered based 

on a number of constraints. This approach was called the 

hidden robot concept for the first time in [8, 9]. The 

procedure of the hidden robot concept application for our 

work is described after the section defining the 

micro-mechanism. 

The overconstrained mechanisms increasing the 

stiffness of the system also form higher internal stresses. 

These stress values are not consistent within the workspace 

of the mechanism, which results in changing link lengths 

throughout the workspace. Together with the joint 

clearances this fact makes the calibration process of the 

mechanism a nontrivial one. The last section of this paper 

is on the work carried out for the calibration of the overall 

system again by making use of the hidden robot concept. 

II. Description of the Mechanism

In our application, the first mechanism designed for

positioning an end-effector in plane was the 5-bar 

mechanism A0ACB shown in Fig. 1a. The mechanism is 

actuated at its fixed revolute joints. The two fixed joint 

axes are selected to be concurrent and the link lengths are 

selected to be identical (a = b = c = d) due to the workspace 

and balancing requirements [7]. Although this 5-bar 

mechanism can position the end-effector point in its planar 

workspace, the orientation of the end-effector is not 

controlled and this results in uncontrolled dynamic effects. 

Also, when the end-effector object size is comparable with 

the link lengths, it is not possible to locate the end-effector 

inside joint C. As a solution to these problems, the 

mechanism is modified as a 6-bar mechanism A0ADCEB 

to obtain a finite moving platform length |DE| (Fig. 1b). In 

order to keep the end-effector orientation constant, two sets 

of parallelogram loops are added on the two sides of the 

arms of the parallel mechanism. Actually, just a pair of 

parallelogram loops on one side is sufficient to keep the 

end-effector orientation, but an extra pair of loops is added 

to keep the symmetry and also overconstrain the 

mechanism. The positive side of having an overconstrained 

mechanism is that the stiffness of the mechanism increased 

and the repeatability is enhanced. The actuators are located 

at joints A0 and B0.  

Fig. 1. a. 5-bar mechanism, b. 6-bar mechanism 

The two mechanisms shown in Fig. 1 are kinematically 

equivalent as far as the position of end-effector-point C is 

concerned. Hence, the simpler kinematic structure in Fig. 

1a can be used as the model of the actual mechanism which 

has the structure in Fig. 1b. Up to this point, theoretically 

everything is fine. However in practice, the theoretical 

model does not match with the actual mechanism due to 

manufacturing tolerance faults, joint clearances and link 

flexibilities. The joint clearance and link flexibility 

problem is partly dealt with the overconstrained structure 

of the mechanism, however the manufacturing faults need 

to be determined and the model of the mechanism is to be 

modified accordingly.  

It is possible to take measurements on the manufactured 

assembly in order to modify the model, however in case of 

an overconstrained system these measurements do not fit to 

the simpler model. Therefore it is necessary to collect data 

from the inputs and end-effector point, and then estimate 

the model parameters from the input/output relationship. 

The next section presents the methods for model estimation 

and calibration.  

III. Hidden Robot Kinematics

Recently the “hidden robot concept” was proposed for 

high speed and high precision robotic applications [8, 9]. 

The hidden robot concept involves the use of a virtual 

model with simpler kinematic structure in the control 

algorithm rather than using the rather complicated 

kinematic structure of the actual robot. This concept was 

originally developed for the control of a robot for which 

the end-effector cannot be directly observed [8, 9]. In this 

study, for the first time, the hidden robot concept is used for 

the control of an overconstrained mechanism. 

For the overconstrained mechanism shown in Fig 1.b 

there is no analytical inverse kinematics solution when the 

link lengths are kept arbitrary subject to the condition that 

the parallelogram loops remain in parallelogram 

proportions. Therefore use of a simpler (hidden) model 

(Fig. 1a) for the inverse kinematics proves useful in control 

and calibration of the mechanism. 

For given measured motor and end-effector location data, 

the model estimation problem is a path generation 

synthesis problem. We present two different path 

generation solutions and then explain how the solution is 

applied for the calibration. 

A. Polynomial Approximation 

In polynomial approximation synthesis, the link 

lengths of the mechanism are determined so that the 

function/path/motion of the end-effector is exactly 

satisfied at certain precision points. Given a set of 

inputs (1i, 2i) and end-effector locations C(xi, yi) for i 

= 1, …, n, the link lengths a, b, c, d of the 5-bar 

mechanism are to be determined. The diads A0AC and 

A0BC are dealt separately. For the A0AC diad: 
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Eq. (1) can be written in polynomial form: 
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where xi represents the set precision point parameters 

(1i, xi, yi), P1 = b
2
 – a

2
, P2 = a, f1(xi) = 1,

f2(xi) = 2(xi cos1i + yi sin1) and F(xi) = xi
2
 + yi

2
.

Given xi for i = 1, 2 P1 and P2 can be solved linearly 

from Eq. (2). Once P1 and P2 are determined, the link 

lengths a and b are determined as 

a = P2    and   2 2

1b a P   (3) 

For dyad A0BC, Eqs. (1)-(3) can be used by 

interchanging the parameters; a with d, b with c and 1 

with 2. 

B. Least Squares Approximation 

Unlike the polynomial approximation, in least squares 

approximation synthesis, it is not required to exactly 

satisfy the constraint equations as in Eq. (2), but an 

error i is allowed:  
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Due to this error, xi are no longer called precision 

points, but they are called design points. The 

advantage of the method is that the number of design 

points n can be selected as large as required. In least 

squares approximation synthesis, the aim is to 

minimize the summation of the squares of the errors:  
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Minimization is achieved by equating the partial 

derivatives of S with respect to P1 and P2 to zero:  
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Eqs. (6) are linear in P1 and P2, hence P1 and P2 can be 

determined uniquely.  

C. Model Estimation from Measured Data 

Several (1i, 2i, xi, yi), say N many, values are 

measured from the real system for model estimation. 

These measurements were performed with an FARO
®
 

interferometer. This device has a measuring precision 

of ±20 m. The nine set of data measured with the 

interferometer are given in Table I. These data are used 

for the model estimations. The locations (xi, yi) are 

selected as the 4 corners, 4 midpoints of the sides and 

the center of the rectangular workspace of the 

mechanism. The link lengths are ideally a = b = c = d = 

150 mm. As it can be seen from Table I, the first point 

is taken as reference; hence the desired and measured 

coordinate values for this point are equal. The 

maximum absolute positioning error is observed for 

point 7 and the amount of error is about 1.5 mm, which 

is way larger than the target precision value of 30 m.

Desired Measured 

i 1 () 2 () xi (mm) yi 

(mm)
xi (mm) yi (mm) 

1 45 -45 212.132 0 212.132 0 

2 60.881 -21.938 212.132 75 212.55 74.95 

3 40.622 -8.689 262.132 75 262.32 74.85 

4 29.100 -29.100 262.132 0 262.03 0.04 

5 368.689 319.378 262.132 -75 261.82 -74.87 

6 381.938 299.119 212.132 -75 211.69 -74.96 

7 388.630 281.721 162.132 -75 160.65 -75.18 

8 57.286 -57.286 162.132 0 162.22 -0.01 

9 78.279 -28.630 162.132 75 163.19 75.08 

TABLE I. Measured data 

However, there were locations in the workspace that 

the errors are almost equal to zero. The main reason 

for this is that the internal stresses on the links of the 

mechanism change with respect to the position of the 

tool in the workspace. Therefore, the link lengths are 

continuously varying while the mechanism is moving 

to different locations of the workspace. 

In order to calculate optimum link lengths that would 

result in a minimum error within the workspace, the 

link lengths as they appear in the hidden robot 

kinematics are iterated by means of the procedure 

explained below. During the iterations, the 

measurements with the FARO
®
 interferometer are 

carried out. 

When applying the polynomial approximation, only 

two of N (= 9 in our case) measurement values can be 

used. For least squares approximation all of the N 

measurement values can be used, but this is not 

necessary. In either case the number of measurement 

values to be used is bounded as 2 ≤ n ≤ N. n many 

measurement values are used for the synthesis 

whereas the error at the remaining N – n many 

measurements are checked. There are 
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 
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 many possible choices of n 

measurements out of N measurements. The maximum 

value of the N many absolute errors  2 2

x y  

between the calculated and desired values is 

monitored for each selection of n many measurements 

and the final selection is done for the minimum value 

of the maximum error. 

All computations are performed in Microsoft Excel
®
. 

For polynomial approximation, all possible 36 choices 

of n = 2 precision points among N = 9 are tried out and 

the minimum error is obtained for design points 1 and 

8. The link lengths are found as a = 149.868 mm,

b = c = 150.000 mm and d = 149.890 mm. After the 

link lengths are modified, the maximum error between 

the calculated and desired coordinates is evaluated as 

93m. Note that this error value is still a calculated 



value, not a measure error. When the measurements 

are repeated with the new link lengths, it is observed 

that the positioning error is decreased to the level of 

700 m, which is still not acceptable. 

For the least squares approximation, 3-to-9 points can 

be used for the synthesis. All possible combinations 

are tried and it is found that the minimum value for the 

maximum absolute error is found as 90 m with the 

selection of points 1, 3, 4 and 8. The new link lengths 

are calculated as a = 149.959 mm, b = 150.013 mm, c 

= 150.033 mm and d = 150.040 mm. 

Besides the maximum absolute error, also the average 

and RMS errors for the N measurements points are 

evaluated and compared for the two approximation 

methods. The measurements and calculations were 

performed several times. As it is in this example, it is 

observed that using polynomial or least squares 

approximation does not quite differ in the result. It is 

noteworthy to emphasize that we have also tried more 

complex hidden robots, such as a 5-bar mechanism 

with offset between the fixed joint axes. The result is 

interesting that the simplest model with just four link 

length parameters together with the simplest 

approximation method gave the best results in 

measurements. 

Unfortunately the modified link lengths just decreased 

the positioning error from about 1500 m to about 700 

m. So, further calibration means are employed, as 

explained in the next section.

IV. Calibration with an Error Correction Matrix

Any type of manufacturing process has its own 

tolerance characteristics. Since in this work a 

manufacturing mechanism is developed, the mechanism 

has its own tolerances due to its mechanic rigidity and 

control performance. There will always be manufacturing 

errors on the parts that are produced for the manufacturing 

mechanism. However, these errors in the manufacturing of 

the links and the joints can be tolerated by a suitable 

calibration process and control parameters can be tuned for 

better performances.  

In our work, when the parts of the mechanism are 

produced, measurements were taken to check whether they 

are within the set tolerances. The largest error in a 

manufactured link was in in range of 100 m. After all the 

links are manufactured, the mechanism is assembled by 

integrating the motors, gears, bearings and the tool. After 

the assembly process, link lengths are re-measured in a 

CMM measurement unit and found to be different than the 

original measurements. The main reasons for the change in 

the link lengths are the flexibility of the links, internal 

stress on the links due to having an overconstrained 

mechanism and the joint clearance. It should be noted that 

the material for links was chosen as Aluminum in order to 

have higher strength to weight ratios. Nevertheless, the 

links were still not rigid enough. Also, repeated CMM 

measurements showed discrepancies, which we think are 

due to joint clearances and CMM measurement errors. 

Therefore, the link lengths calculated according to the 

CMM measurements were not trustworthy and could not 

be used to modify our kinematic model. 

For calibration of high precision positioning machines, 

the standard methodology is to construct an error matrix 

throughout the workspace and feed these errors as 

corrections to the control inputs. This task is quite 

straightforward for Cartesian machines with prismatic 

joints only – which is usually the case in the industry. 

However, when the relationship between the workspace 

and joint space parameters is nonlinear, the errors 

measured in the workspace have to be converted to the 

necessary corrections in the joint space by means of the 

mechanism kinematics. 

Another interferometer from Renishaw Company is 

used in this process that has ±1 m of precision. The 

set-up for the calibration process is presented in Fig. 2. 

The workspace of the mechanism is divided into 5 mm  

5 mm grids. The errors in between these points are 

interpolated in the workspace and then translated into 

the joint space by using inverse kinematics of the hidden 

robot. 

Fig. 2. Calibration process set-up with the Renishaw interferometer

The error correction procedure is as follows: First, i = 

1,…,m points along x-axis and j = 1,…,n points along 

y-axis are selected in the rectangular workspace and hence 

an m  n many points are selected. In our application, the 

100 mm  150 mm rectangular workspace of the 

mechanism is divided into 5 mm  5 mm grids. The 

positions of the actuated joints corresponding to each grid 

node are calculated with the updated parameters in inverse 

kinematics. The control parameters are set to have no 

steady state error within the workspace. Therefore, there is 

no error in the controller to contribute in the positioning 

error of the mechanism. Coordinate measurements are 

taken at these points and the measured values are 

subtracted from the desired values to obtain the error 

matrix    
mm

xi yi1 1
,  

 
. The error values for the points 

besides the selected m  n many points are evaluated using 

the bilinear interpolation. For the four points Q11(x1, y1), 

Q12(x1, y2), Q21(x2, y1) and Q22(x2, y2) shown in Fig. 2, let 

the measured x or y coordinate errors be 11 = (x1, y1), 12 

= (x1, y2), 21 = (x2, y1), 22 = (x2, y2). Then the error (x, 

y) at a point P(x, y) in this grid is calculated with bilinear

interpolation as 
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When x = x1 (or y = y1), linear interpolation is performed 

between Q11 and Q12 (or Q11 and Q21). The error calculation 

is performed for the x- and y-coordinate error separately. 

The representation of the bilinear interpolation grid is 

shown in Fig. 3. 

Fig. 3. Bilinear interpolation in a grid 

Given the x- and y-coordinate errors (x,y) for a point 

P(x,y), the input correction values (1,2) are determined 

using the Jacobian matrix, J, of the manipulator:  

[1,2]
T
 = J

-1
xy


. For the 5-bar mechanism in Fig.

1a. 
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In Eq. (8), 1 and 2 are input angles, hence they are 

known. 3 and 4 are found from the kinematic analysis as 

follows:  
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Finally, the inputs 1 and 2 are modified as 1 – 1 and 

2 – 2.

The final calibration procedure is carried out with the 

complete machine including the macro/primary 

mechanism and the micro/secondary mechanism. The 

precision of the complete mechanism is measured to be 

±37 µm/m and the repeatability is calculated to be ±26 

µm/m. The calculation of these results is compatible with 

the VDI Standard no VDI/DGQ 3441 - Statistical Testing 

of the Operational and Positional Accuracy of Machine 

Tools; Basis. 

V. Conclusions 

In the work presented in this paper, a micro (secondary) 

mechanism of a redundant planar manufacturing machine 

was designed and manufactured. An important feature of 

this mechanism is that it is an overconstrained mechanism 

which does not have an analytical inverse kinematics 

solution. Due to the limitations of the application, 

numerical solution for the inverse kinematics cannot be 

used for running the mechanism to accomplish its task.  

In order to overrule this limitation, the hidden robot 

concept is devised for resembling the overconstrained 

mechanism which has complex kinematics with a 

mechanism which has simpler kinematics. The kinematics 

of the hidden robot is used in the control of the redundant 

machine. It is also used during the calibration process of 

the mechanism. After using the hidden robot concept in 

calibration, the precision of the mechanism is improved 

and the errors decreased by about 40 times. The results of 

the calibration process are satisfactory in the sense that the 

precision and repeatability values are comparable with the 

previously set design criteria for the redundant machine. 

Finally, this work was a satisfactory example of the hidden 

robot concept in the control and calibration of complex 

mechanisms. 
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